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Agenda 

• 10:00-10:15 Introduction to MSI Resources 
• 10:15-10:30 Introduction to MPI 
• 10:30-11:30 Blocking Communication 
• 11:30-12:00 Hands-on 

• 12:00- 1:00  Lunch 

•  1:00- 1:45  Non-Blocking Communication 
•  1:45- 2:20  Collective Communication 
•  2:20- 2:45  Hands-on 
•  2:45- 2:50  Break 
•  2:50- 3:30  Collective Computation and Synchronization 
•  3:30- 4:00  Hands-on  
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Mesabi 
HP Linux Cluster 

 
750+  compute nodes  
Each node has 2 x 12-core 2.5 GHz Intel Haswell processors 
18,750+   cores 
711+ Tflop   aggregate performance 
 
From 64 GB  to  1 TB  of memory per node 
Aggregate memory: 67+   TB of RAM 
 
40 GPU nodes: 
2 Nvidia Tesla K40 GPUs 
 
FDR/EDR Infiniband  interconnect 
è 5+ GB/s node-to-node communication 
 
IB connect to Panasuas global file system 

•  https://www.msi.umn.edu/content/mesabi    
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Itasca   

HP Linux Cluster 
 
1091 compute nodes  
    2 quad-core 2.8 GHz Intel Nehalem processors 
    24 GB of memory per node 
 
Total of 8,728 cores 
Aggregate of 26 TB of RAM 
 
QDR Infiniband  interconnect 
è3+ GB/s none-to-node communication 
 

•   https://www.msi.umn.edu/content/itasca 
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Serial ! one statement at a time 
 one thread of execution,    and 
 one process 
  

Parallel ! multiple concurrent statements 
 multiple threads of execution,    and/or 
 one or more processes 

 
Parallel Programming  
 
Involves: 
Decomposing work into many tasks 
Distributing tasks to multiple threads or processes 
Threads/processes  work simultaneously 
Coordinating work and communication of threads 
 
Considerations 
Type of parallel architecture being used  
Type of communication needed between tasks 

Introduction to parallel programming 
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Parallel Programming 

Uses 
   Multiple processors & threads 
   Multiple cores 
   Network (distributed memory machines, cluster, etc.) 
   Environment to create and manage parallel processing 
   Operating System 
 
 
Parallel Programming Paradigms 
  Distributed memory:  multiple processes  MPI 
  Shared Memory:  multiple threads  OpenMP 
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Hardware Considerations 
Memory architectures 
   Shared Memory (NUMA) 
   Distributed  Memory 
   Cluster of Shared Memory “nodes” 
 
 
Inter-node communication is required to: 
   Convey information and data between nodes 
   Start, stop, & synchronize processes across nodes 
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Only one processor can access 
the shared memory location at a 
time. 
 
Synchronization achieved by 
controlling tasks reading from 
and writing to the shared 
memory 
 
Advantages: 
Easy for user to use efficiently,  
data sharing among tasks is fast, … 
 
Disadvantages: 
Memory is bandwidth limited,  
Total memory limited to one node 

Shared Memory 
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Data is shared across network 
using message passing 
 
User code drives communication 
 
 
Advantages: 
Scalability, Each processor can 
rapidly access its own memory 
without interference 
 
Disadvantages:  
Programmer responsible for 
send/receive data between 
processes 

Distributed Memory 
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Compute Cluster 
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  Message Passing 
MPI : Message Passing Interface 
•  A message passing library specification 
•  Model for distributed memory platforms 
•  Not a compiler 
•  For multi-core, clusters, and heterogeneous networks 
•  Permits development of parallel software libraries 
•  Provides access to advanced parallel hardware 
•  End uses 

  Applications 
           Libraries 

 Toolkits 
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MPI 
 
•  Widely accepted standard for distributed memory computing 
•  Support by all major vendors 
•  Efficient implementations exists for most parallel hardware 
•  Code that uses MPI is highly portable 
•  Very extensive and flexible interface  that leaves most of the 

implementation details up to vendors 
•  Just a small subset of the functions (6 routines) can be used 

to write many applications 
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Parallel programming paradigms 

SPMD (Single Program Multiple Data) 
• All processes follow essentially the same execution path 
• Data-driven execution 
 
MPMD (Multiple Programs Multiple Data) 
• Master and slave  processes follow distinctly different 
execution paths 
• Heterogeneous computing (GPU, PHI, …) 
 
 

MPI supports both 
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MPI  Blocking Communication 
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Sending and Receiving Messages 

Basic message passing : 
 One process send a message 
 Another process receives the message. 

 
 
 
 
 
 
 
Questions: 
• To whom is data sent? 
• Where is the data? 
• What type of data is sent? 
• How much data is sent? 
• How does the receiver identify it? 

 

Process 0 Process 1 

Send Receive 
A: 

B: 
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Message is divided into data and envelope 
 
data 

 buffer 
 count 
 data type 

envelope 
 process identifier (source/destination rank) 
 message tag 
 communicator 
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MPI Calling Conventions 

Fortran Bindings: 
          Call MPI_XXXX (…, ierror ) 

•  Case insensitive 
•  Almost all MPI calls are subroutines 
•  ierror is always the last parameter 
•  Program must include ‘mpif.h’  
     
 
C Bindings: 

   int ierror = MPI_Xxxxx (…   ) 
 
•  Case sensitive (as it always is in C) 
•  All MPI calls are functions: most return integer error code 
•  Program must include “mpi.h” 
•  Parameters are passed by value ! pass pointers to data buffers 
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MPI Basic Send/Receive 

Blocking send: 
 
MPI_Send (buffer,  count,  datatype,  dest,  tag,  comm) 
 
 
 
Blocking receive: 
 
MPI_Recv (buffer,  count,  datatype,  source,  tag,  comm,  status) 
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MPI C Datatypes 

MPI datatype	 C datatype	

MPI_CHAR	 char	
MPI_SHORT	 signed short int	
MPI_INT	 signed int	
MPI_LONG	 signed long int	
MPI_UNSIGNED_CHAR	 unsigned char	
MPI_UNSIGNED_SHORT	 unsigned short int	
MPI_UNSIGNED_LONG	 unsigned long int	
MPI_UNSIGNED	 unsigned int	
MPI_FLOAT	 float	
MPI_DOUBLE	 double	
MPI_LONG_DOUBLE	 long double	
MPI_BYTE	 byte	
MPI_PACKED	
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MPI Fortran Datatypes 

MPI FORTRAN	 FORTRAN datatypes	
MPI_INTEGER	 INTEGER	

MPI_REAL	 REAL	

MPI_REAL8	 REAL*8	

MPI_DOUBLE_PRECISION	 DOUBLE PRECISION	

MPI_COMPLEX	 COMPLEX	

MPI_LOGICAL	 LOGICAL	

MPI_CHARACTER	 CHARACTER	

MPI_BYTE	

MPI_PACKED	
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MPI Process Identifier 

•  MPI Application: runs on  a group of processes. 
•  RANK: one processes in this group 
•  Rank NUMBER: unique number for the process 
 

 In MPI communication: 
•  Destination is specified by rank number 
•  Can point to all ranks:   MPI_ANY_SOURCE 

•  Processes are named according to their rank in the group 
•  Can have more than one group in an MPI application 
•  Groups are pointed to by a “communicator” 
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MPI Communicators 

•  A communicator 
  denotes a group of processes in an MPI application 

 
•  MPI_COMM_WORLD 
   predefined communicator 

  includes all processes in an MPI application 
 
•  New communicators 

  can be created in an MPI program 
  can point to some or all  MPI “ranks 
  can point to a re-ordering of ranks 

 
•  Most MPI programs only use MPI_COMM_WORLD 
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MPI Message Tag 

Tags allow programmers to 
•  Organize / classify MPI messages 
•  Distinguish  messages from the same source 
 
The MPI standard guarantees that tags are 
•   integers in the range 0  ~ 32,767   (at least) 
•  most implementations allow a much larger range of tags 
•  upper bound on tag value: MPI_TAG_UB 
 
MPI_ANY_TAG can be used as a wild card 
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MPI Blocking Communication Semantics 

•  MPI_SEND does not complete until buffer is empty 
(available for reuse) 

•  MPI_RECV does not complete until buffer is full 
(available for use) 

•  Completion of communication generally depends on 
the message size, system memory & network 

•  Blocking communication is simple to use but can be 
slow or cause deadlocks (if you are not careful). 

•  A blocking or nonblocking send can be paired to a 
blocking or nonblocking receive 
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Fortran Example 

program MPI_small 
include ‘mpif.h’ 
integer rank, size, ierror, tag, status(MPI_STATUS_SIZE) 
character(12) message 
 
call MPI_INIT(ierror) 
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror) 
call MPI_COMM_RANK(MPI_COMM_WORLD, rank,ierror) 
tag = 100 
if(rank .eq. 0) then 
   message = ‘Hello, world’ 
   do i=1, size-1 
   call MPI_SEND(message, 12, MPI_CHARACTER, i, tag, 

  MPI_COMM_WORLD, ierror) 
   enddo 
Else 
   call MPI_RECV(message, 12, MPI_CHARACTER, 0, tag, 

  MPI_COMM_WORLD, status, ierror) 
endif 
print*, ‘node’ rank, ‘:’, message 
call MPI_FINALIZE(ierror) 
end 
 



• Supercomputing Institute 
• for Advanced Computational Research 

#include<stdio.h> 
#include “mpi.h” 
main(int argc, char **argv) 
{ 
int rank, size, tag, rc, i; 
MPI_Status status; 
char message[20] 
 
rc = MPI_Init(&argc,&argv) 
rc = MPI_Comm_size(MPI_COMM_WORLD,&size); 
rc = MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
tag = 100; 
if(rank == 0) { 
   strcpy(message, “Hello, world”); 
   for (i=1; i<size; i++) 

 rc = MPI_Send(message, 13, MPI_CHAR, i, tag, MPI_COMM_WORLD); 
} 
else 
  rc = MPI_Recv(message, 13, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status); 
 
print(“node %d : %.13s\n”, rank,message); 
rc = MPI_Finalize(); 
} 
 

C Example 
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Hands-on 
https://www.msi.umn.edu/content/mpi-hands-workshop 

 
# Get example and build 

 cp -r /home/tech/public/examples/hello_mpi . 
 cd hello_mpi               
 module load intel    impi 
 make 

                                                                                
# Run interactively 

 mpirun -np 4 ./hello 
 
# Set the following for large-memory jobs 
      ulimit -s unlimited 

• Supercomputing Institute 
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MPI Non-Blocking Communication 
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Blocking Communication 

MPI_SEND does not complete until buffer is copied out. Time 
depends on send mode and MPI implementation. 
 
MPI_RECV does not complete until the message is 
completely received. 
 
Completion of communication generally depends on the 
message size and the system buffer size.  
 
Blocking communication is simple to use but may be prone to 
deadlocks. 
 
Initiation of blocking communication may suffer from high 
latency  à  poor scaling to many MPI ranks. 
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Deadlocks 

Two or more processes (MPI ranks) wait for each other to 
act before they act.  They each stop before getting to the 
part of the code where they would have taken the action 
needed for other ranks to keep going. 
 
Common example: 

 Two ranks call a blocking mpi_recv to each other. 
 Each waits for data form the other. 
 Neither ever sends it. 

 
To avoid deadlocks 

 Different ordering of calls between ranks 
 Non-blocking calls 
 Use of MPI_SendRecv 
 Buffered mode 
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Send modes 

Standard Mode ( MPI_Send ) 
The standard MPI Send, the send will not complete until it is safe to modify 
the send buffer: buffer has at least been copied to a supplied system 
buffer.  MPI may or may not buffer: depends on many details. 
 
Synchronous mode ( MPI_Ssend ) 
The send does not complete until after a matching receive has been 
posted 
 
Buffered mode ( MPI_Bsend ) 
User supplied buffer space is used for system buffering. 
The send will complete as soon as the send buffer is copied to the user 
supplied buffer. 
 
Ready mode ( MPI_Rsend ) 
The send will send eagerly under the assumption that a matching receive 
has already been posted (an error results otherwise). 
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Non Blocking Communication 

•  Non-blocking calls return immediately 
•  A completion call is needed to ensure the operation is finishes. 
 
For example: 

  
 MPI_ISEND( start, count, datatype, dest, tag, comm, request1) 
 MPI_WAIT( request1, status ) 

 
 MPI_IRECV( start, count, datatype, src, tag, comm, request2) 
 MPI_WAIT( request2, status) 

 
Or use for all non-blocking communications 

  
 MPI_WAITALL (count, request_array, status_arrsy) 

 
One can also test the status without waiting using MPI_TEST 

 MPI_TEST(request, flag, status) 
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Non Blocking Communication Example 

 
... 
<sbuf is ready to send> 
Isend(sbuf, ... B, ... Hsend) 
<do not change sbuf> 
... 
<can do work here> 
<can do other MPI calls> 
... 
Wait(Hsend, ...) 
<safe to modify sbuf> 
... 

... 
Irecv(rbuf, ... A, ... Hrecv) 
<do nothing with rbuf> 
... 
<can do work here> 
<can do other MPI calls> 
... 
Wait(Hrecv, ...) 
<can use rbuf> 
... 

Process A                                                  Process B 

Transfer 
happens 

here 

Illustrates conservative use of standard Isend & Irecv calls 

Time 
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Non-blocking Send Syntax 

C:  
   int MPI_Isend(void* buf, int count, MPI_Datatype datatype,  int dest, int tag,  

            MPI_Comm comm, MPI_Request *request) 
 
FORTRAN: 
   MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, 

         COMM, REQUEST, IERROR) 
 

 [ IN buf] initial address of send buffer (any data type) 
 [ IN count] number of elements in send buffer (integer) 
 [ IN datatype] datatype of each send buffer element (defined constant) 
 [ IN dest ] rank of destination (integer) 
 [ IN tag ] message tag (integer) 
 [ IN comm ] communicator (handle) 
 [ OUT request ] communication request (handle) 
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Non-blocking Recv  Syntax 

C:  
  int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source, int tag, 
                        MPI_Comm comm, MPI_Request *request) 
 
FORTRAN: 
  MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, 
                      COMM, REQUEST, IERROR) 
 

 [ OUT buf] initial address of receive buffer (choice) 
 [ IN count] number of elements in receive buffer (integer) 
 [ IN datatype] datatype of each receive buffer element (defined constant) 
 [ IN dest ] rank of source (integer) 
 [ IN tag ] message tag (integer) 
 [ IN comm ] communicator (handle) 
 [OUT request ] communication request (handle) 
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Non-blocking Communication  completion calls 

Wait: MPI_WAIT or MPI_WAITALL 
 Used for non-blocking Sends and Receives 
 Suspends until an operation completes 

 
MPI_WAIT syntax 

 Fortran  call MPI_WAIT (request, status, ierror) 
 C:  ierror = MPI_Wait (request, status) 

 
 
Test: MPI_TEST 
Returns immediately with information about a non-blocking send or 
receive.   Gives immediate answer to: is send or receive done? 
 
MPI_TEST Syntax 
     Fortan:  call MPI_TEST (request, flag, status, ierror) 
     C:  ierror = MPI_Test (request, flag, status) 
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Non-blocking Communication  completion calls 

A request object can be deallocated at any time 
Use the following operation: 
 

 MPI_REQUEST_FREE(request) 
 [ INOUT request ] communication request (handle) 

 
 
 
 

 C:  ierror = MPI_Request_free(MPI_Request *request) 
 
FORTRAN:  call MPI_REQUEST_FREE(REQUEST, IERROR) 
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Non-blocking Communication Examples 

Example: Simple usage of nonblocking operations and MPI_WAIT 
 
IF(rank.EQ.0) THEN 

 CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr) 
 ****do some computation to mask latency**** 
 CALL MPI_WAIT(request, status, ierr) 

ELSE 
 CALL MPI_IRECV(a(1), 10, MPI_REAL, 0, tag, comm, Request, ierr) 
 ****do some computation to mask latency**** 
 CALL MPI_WAIT(Request, status, ierr) 

END IF 
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    INCLUDE “mpif.h” 
    INTEGER ierror, rank, size, status(MPI_STATUS_SIZE), requests (2) 
 
    CALL MPI_INIT(ierror) 
    CALL MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr) 
    CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) 
    IF(rank.eq.0) THEN 
        c = 9.2 
        a = 4.2 
        b = 8.4 
        CALL MPI_ISEND(a, 1, MPI_REAL,1,101,MPI_COMM_WORLD, requests(1), ierror) 
        ! Can do computations which do not  overwrite a  
        b = b + a 
        CALL MPI_WAIT(requests(1), status, ierror) 
        d = b + c 
    ELSE 
        a = 14.2 
        s = 18.4 
        CALL MPI_IRECV(c,1,MPI_REAL,0,101,MPI_COMM_WORLD, requests(2), ierror) 
        !  Do not read from or overwrite c till wait 
        CALL MPI_WAIT(requests(2), status,ierror) 
        c = a + c 
    END IF 
 
    CALL MPI_FINALIZE(ierror) 
    STOP 
    END     
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Non-blocking Communication 

Gain 
•  Avoid Deadlocks 
•  Decrease Synchronization Overhead 
•  Can Reduce System Overhead 
•  Post non-blocking sends/receives early and do waits late 
•  Recommended: do MPI_IRECV before the MPI_Rsend is called.  

Be careful with reads and writes 
–  Avoid writing to send buffer between MPI_ISEND and MPI_WAIT 
–  Avoid reading or writing in receive buffer between MPI_IRECV and 

MPI_WAIT 
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MPI 
Collective Communication 
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MPI Collective Communication 

Three Classes of Collective Operations 
 
Data movement:  
broadcast, gather, all-gather, scatter, and all-to-all 
 
Collective computations (reductions): 
Data from all members in a group is “reduced” to produce a global 
result (min, max, sum, ...). 
 
Synchronization:  
processes wait until all members of the group have reached the 
synchronization point 
 
Every process must call the same collective communication 
function. 
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MPI Collective Communication Broadcast 

One rank sends (broadcasts) a block of data to all the 
ranks in a group. 
 
 

A0	 A0	

A0	

A0	

A0	

broadcast 

processes 

data 

0

2

3

1
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MPI Collective Communication Broadcast 

Syntax 
 C: int MPI_Bcast (void* buffer, int count, MPI_Datatype datatype,  int root, 

                                           MPI_Comm comm) 
 Fortran: MPI_BCAST (buffer, count, datatype, root, comm, ierr) 

where: 
 buffer: is the starting address of a buffer 
 count: is an integer indicating the number of data elements in the buffer 
 datatype: is MPI defined constant indicating the data type of the elements 

in the buffer 
 root: is an integer indicating the rank of broadcast root process 
 comm: is the communicator 

 
The MPI_BCAST must be called by each process in the group, 
specifying the same comm and root. The message is sent from the root  
process to all processes in the group. 
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MPI Collective Communication 
Gather  

Data is distributed throughout all processors in the group. 
Collect distributed data to a specified process (rank). 
 

100 100 100 
100 100 100 

all processes 

at root 

 
 
real a(100), rbuf(MAX) 
call mpi_gather(a, 100, MPI_REAL, rbuf, 100, MPI_REAL, root, comm, ierr) 
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MPI Collective Communication 
Gather 

Syntax 
C: 
  int MPI_Gather(void* sbuf, int scount, MPI_Datatype stype, void* rbuf, int rcount, 
                           MPI_Datatype rtype, int root, MPI_Comm comm) 
 
FORTRAN: 
    MPI_GATHER (sbuf, scount, stype, rbuf, rcount, rtype, root, comm, ierr) 
  where:    

 sbuf:         is the starting address of a buffer, 
 scount:      is the number of elements in the send buffer, 
 stype:       is the data type of send buffer elements, 

       rbuf:   is the address of the receive buffer 
 rcount:      is the number of elements for any single receive 
 rtype:         is the data type of the receive buffer elements 
 root:           is the rank of receiving process, and 
 comm:       is the communicator 
 ierr:   is error message 
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MPI Collective Communication 
Gather Example 

INCLUDE ‘mpif.h’ 
DIMENSION A(25, 100), b(100), cpart(25), ctotal(100) 
INTEGER root, rank 
CALL MPI_INIT(ierr) 
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr) 
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr) 
root=1 
Call set_a(A,rank) 
Call set_b(B) 
 
DO I=1,25 
cpart(I)=0. 
DO K=1,100 
cpart(I)=cpart(I)+A(I,K)*b(K) 
END DO 
END DO 
 
CALL MPI_GATHER (cpart, 25, MPI_REAL, ctotal, 25,  
&             MPI_REAL, root, MPI_COMM_WORLD, ierr) 
If(rank.eq.root) print*, (ctotal(I),I=1,100) 
CALL MPI_FINALIZE(ierr) 
END 

  

       A             *   b        =        c 

Process            1             1 

Process            2                   2 

Process            3             3 

Process            4             4 
 
- A: Matrix distributed by rows 
- B: Vector shared by all process 
- C: results to get by the root process 
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MPI Collective Communication 
Scatter 

Distribute data of to all the processes (ranks) in a group. 
 
 

100 100 100 

100 100 100 

all processes 

at root 
 
 
real sbuf(MAX), rbuf(100) 
call mpi_scatter(sbuf, 100, MPI_REAL, rbuf, 100, MPI_REAL, root, comm, ierr) 
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MPI Collective Communication 
Scatter Syntax 

C: 
    int MPI_Scatter(void* sbuf, int scount, MPI_Datatype stype, void* rbuf, 
                       int rcount, MPI_Datatype rtype, int root, MPI_Comm comm) 
 
FORTRAN: 
    MPI_SCATTER(sbuf, scount, stype, rbuf, rcount, rtype, root, comm, ierr) 
where: 

 sbuf:   is the address of the send buffer, 
 scount:   is the number of elements sent to each process, 
 stype:   is the data type of the send buffer elements,  
 rbuf:   is the address of the receive buffer, 
 rcount:   is the number of elements in the receive buffer, 
 rtype:   is the data type of the receive buffer elements, 
 root:   is the rank of the sending process, and 
 comm:   is the communicator 

 
Note: sbuf is significant for root process only 
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      Sample execution 
 PROGRAM scatter              $ mpirun -np 3 ./a.out 
 INCLUDE ‘mpif.h’           0: irecv = 1 
 INTEGER isend(3)           1: irecv = 2 
 CALL MPI_INIT(ierr)                            2: irecv = 3 
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)     
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr) 
 IF (myrank= = 0) THEN 
      DO i=1, nprocs 
  isend (i) = i 
      ENDDO   

                    end if 
 CALL MPI_SCATTER (isend, 1, MPI_INTEGER, 
 &                                      irecv, 1, MPI_INTEGER, 0, 
 &             MPI_COMM_WORLD, ierr) 
 PRINT *, ‘irecv = ‘, irecv 
 CALL MPI_FINALIZE(ierr) 
 END 

 
         rank=0=root    rank=1   rank=2 

 
  sendcount 

                                       sendbuf 
 
  recvcount 

  recvbuf  recvbuf        recvbuf 

1 
2 
3 

1 3 2 
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MPI Collective Communication 
All Gather 

MPI_ALLGATHER can be thought of as MPI GATHER where all processes, 
not only one, receive the result. 
 
 
                                 data 

    
                                            allgather 
 
 
 

   
  
  

   
 
 processes 
 
 
The syntax of MPI_ALLGATHER is similar to MPI_GATHER. However, the 
argument root is dropped 

A0	

B0	

C0	

D0	

A0	 B0	 C0	 D0	

A0	 B0	 C0	 D0	

A0	 B0	 C0	 D0	

A0	 B0	 C0	 D0	
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MPI Collective Communication 
All Gather Syntax 

C: 
 int MPI_Allgather (void* sbuf, int scount, MPI_Datatype stype, void* rbuf, int rcount, 

                                                   MPI_Datatype rtype, MPI_Comm comm) 
 
FORTRAN 

 MPI_ALLGATHER (sbuf, scount, stype, rbuf, rcount, rtype, comm, ierr) 
 
Example: back to the previous “gather” example, what should we do if 
every process needs the results of array Ctotal for next computation? 
 
Replace 

 CALL MPI_GATHER (cpart, 25, MPI_REAL, ctotal, 25, 
                                   MPI_REAL, root, MPI_COMM_WORLD, ierr) 
  

With 
 CALL MPI_ALLGATHER (cpart, 25, MPI_REAL, ctotal, 25, 
                                           MPI_REAL, MPI_COMM_WORLD, ierr) 
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MPI Collective Communication 
Alltoall 

A0	 B0	 C0	 D0	 E0	 F0	

A1	 B1	 C1	 D1	 E1	 F1	

A2	 B2	 C2	 D2	 E2	 F3	

A3	 B3	 C3	 D3	 E3	 F3	

A4	 B4	 C4	 D4	 E4	 F4	

A5	 B5	 C5	 D5	 E5	 F5	
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MPI Collective Communication 
Alltoall Syntax 

C:  

 int MPI_Alltoall(void* sbuf, int scount, MPI_Datatype stype, void* rbuf, int    

                  rcount, MPI_Datatype rtype, MPI_Comm comm ) 

FORTRAN: 

 MPI_ALLTOALL (sbuf, scount, stype, rbuf, rcount, rtype, comm, ierr) 

where: 

 sbuf:  is the starting address of send buffer, 

 scount:  is the number of elements sent to each process, 

 stype:  is the data type of send buffer elements, 

 rbuf: is the address of receive buffer, 

 rcount:  is the number of elements received from any process, 

 rtype:  is the data type of receive buffer elements, and  

 comm:  is the group communicator. 
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 PROGRAM alltoall 
 INCLUDE ‘mpif.h’ 
 INTEGER isend (3), irecv (3) 
 CALL MPI_INIT(ierr) 
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr) 
 CALL MPI_COMM_RANK(MPI_COMM_WORLD,  

               & myrank, ierr) 
 DO i=1, nprocs 
  isend (i) = i + nprocs * myrank 
 ENDDO 
 PRINT *, ‘isend =‘, isend 
 CALL MPI_ALLTOALL(isend, 1, MPI_INTEGER, 

              &         irecv, 1, MPI_INTEGER, 
              &           MPI_COMM_WORLD, ierr) 

 PRINT *, ‘irecv =‘, irecv 
 CALL MPI_FINALIZE(ierr) 
 END 

 

  

 rank=0 rank=1  rank=2  

sendcount 
 

                send buf              send buf 

 

recvcount 

                    recvbuf  recvbuf  recvbuf 

1 4 7 
2 5 8 
3 6 9 

1 
4 

2 
7 

5 
8 9 

6 
3 

Figure of MPI_ALLTOALL 

 
     $ a.out -procs 3 

 0: isend 1 2 3 
 1: isend 4 5 6 
 2: isend 7 8 9   
 0: irecv 1 4 7  
 1: irecv 2 5 8  
 2: irecv 3 6 9  
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Hands-on 
https://www.msi.umn.edu/content/mpi-hands-workshop 

 
# Get example and build 

 cp -r /home/tech/public/examples/hello_mpi . 
 cd hello_mpi               
 module load intel  impi 
 make 

                                                                                
# Run interactively 

 mpirun -np 4 ./hello 
 
# Set the following for large-memory jobs 
           ulimit -s unlimited 
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MPI  
Collective Computations and Synchronization 
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MPI_Reduce 

These routines perform a global operation across all 
members of a group 
 
The partial result in each process in the group is combined 
in one specified process or all the processes using some 
desired function. 
 
Three reduces routines: 
MPI_REDUCE returns results to a single process; 
MPI_ALLREDUCE returns results to all processes in the 
group; 
MPI_REDUCE_SCATTER scatters a vector, which results 
in a reduce operation, across all processes. 
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Fortran 

 MPI_REDUCE (sbuf, rbuf, count, stype, op, root, comm, ierr) 
 

 MPI_ALLREDUCE (sbuf, rbuf, count, stype, op, comm, ierr) 
  
 MPI_ REDUCE_SCATTER (sbuf, rbuf, rcounts, stype, op, comm, ierr) 

 
where 

 sbuf:  is the address of send buffer, 
 rbuf:  is the address of receive buffer, 
 count:  is the number of elements in send buffer, 
 stype:  is the data type of elements of send buffer, 
 op:  is the reduce operation (which may be MPI predefined, or your own), 
 root:  is the rank of the root processes, and 

 comm:  is the group communicator. 
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C: 

 int MPI_Reduce (void* sbuf, void* rbuf, int count, MPI_Datatype stype,   
                 MPI_Op op, int root, MPI Comm comm) 
 

 int MPI_Allreduce(void* sbuf, void* rbuf, int count, MPI Datatype stype, MPI_Op op, 
  MPI Comm comm) 
  
 int MPI_Reduce_scatter (void* sbuf, void* rbuf, int* rcounts, MPI Datatype stype, 
   MPI_Op op, MPI Comm comm) 

 
where 

 sbuf:  is the address of send buffer, 
 rbuf:  is the address of receive buffer, 
 count:  is the number of elements in send buffer, 
 stype:  is the data type of elements of send buffer, 
 op:  is the reduce operation (which may be MPI predefined, or your own), 
 root:  is the rank of the root processes, and 
 comm:  is the group communicator. 
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MPI Predefined Reduce Operations 

Name Meaning	 C type	 FORTRAN type	

MPI_MAX	 maximum	 integer, float	 integer, real, complex	

MPI_MIN	 minimum	 integer, float	 integer, real, complex	

MPI_SUM	 sum	 integer, float	 integer, real, complex	

MPI_PROD	 product	 integer, float	 integer, real, complex	

MPI_LAND	 logical and	 integer	 logical	

MPI_BAND	 bit-wise and	 integer, MPI_BYTE	 integer, MPI_BYTE	

MPI_LOR	 logical or	 integer	 logical	

MPI_BOR	 bit-wise or	 integer, MPI_BYTE	 integer, MPI_BYTE	

MPI_LXOR	 logical xor	 integer	 logical	

MPI_BXOR	 bit-wise xor	 integer MPI_BYTE	 integer, MPI_BYTE	

MPI_MAXLOC	 max value and location	 combination of int, float, 
double, and long double	

combination of integer, real, 
complex, double precision	

MPI_MINLOC	 min value and location	 combination of int, float, 
double, and long double	

combination of integer, real 
complex, double precision	
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MPI_REDUCE 

 
Usage:  CALL MPI_REDUCE (sendbuf, recvbuf, count, datatype, op, root, comm, ierror) 
 

Parameters 
(CHOICE) sendbuf  The address of the send buffer (IN) 
(CHOICE) recvbuf   The address of the receive buffer, sendbuf and recvbuf cannot overlap in memory. (significant only at root) (OUT) 
INTEGER count        The number of elements in the send buffer (IN) 
INTEGER datatype  The data type of elements of the send buffer (handle) (IN) 
INTEGER op        The reduction operation (handle) (IN) 
INTEGER root        The rank of the root process (IN) 
INTEGER comm        The communicator (handle) (IN) 
INTEGER ierror        The Fortran return code 

                            comm 

rank=0=root       rank=1        rank=2 

 

          sendbuf         sendbuf        sendbuf   

           

                  op           op 

 

            recvbuf  

 

count 

count 

1 3 2 

6 = 1 + 2 + 3 

+ + 

Figure: MPI_REDUCE for Scalar Variables 

Sample  Program 
     PROGRAM reduce 
     include ‘mpif.h’ 
     CALL MPI_INIT (ierr) 
     CALL MPI_COMM_SIZE (MPI_COMM_WORLD, nprocs, ierr) 
     CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr) 
      isend= myrank+1 
     CALL MPI_REDUCE (isend, irecv, 1, MPI_INTEGER, 
 &                                      MPI_SUM, 0, MPI_COMM_WORLD, ierr) 
     IF (myrank= =0) THEN 
         PRINT *, ‘irecv =‘, irecv 
     endif 
     CALL MPI_FINALIZE (ierr) 
     END 

Sample execution 
   % a.out -procs 3 
         % 0: irecv = 6   
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        Sample program 
 PROGRAM allreduce 
 INCLUDE ‘mpif.h’ 
 CALL MPI_INIT (ierr) 
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr) 
 CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr) 
  isend = myrank + 1 
 CALL MPI_ALLREDUCE (isend, irecv, 1, MPI_INTEGER, MPI_SUM,      
 &  MPI_COMM_WORLD, ierr) 
 PRINT *, ‘irecv =‘, irecv 
 CALL MPI_FINALIZE (ierr) 
 END 

 
         Sample execution 
                      $ a.out -procs 3 

   
                    0: irecv = 6 

 1: irecv = 6 
 2: irecv = 6 

 
 
 
 

 
 
 

  

 rank=0 rank=1  rank=2  

 
 

                send buf              send buf 

 

 recvbuf  recvbuf                  recvbuf 

1 2 3 

6 = 1 +2 + 3 6 = 1 +2 + 3 6 = 1 +2 + 3 

+ + + 

count  

count  

comm 

MPI_ALLREDUCE 
 
Usage:  CALL MPI_ALLREDUCE (sendbuf, recvbuf, count, datatype, op, comm, ierror) 
 

Parameters 

(CHOICE) sendbuf        The starting address of the send buffer (IN) 
(CHOICE) recvbuf         The starting address of the receive buffer,,                    

             sendbuf and recvbuf cannot overlap in memory (OUT) 
INTEGER count              The number of elements in the send buffer (IN) 
INTEGER datatype        The data type of elements of the send buffer (handle) 

(IN) 
INTEGER op              The reduction operation (handle)(IN)   
INTEGER comm            The communicator (handle) (IN)  
INTEGER ierror            The Fortran return code 
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Usage: CALL MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror) 
 

Parameters 
(CHOICE) sendbuf      The starting address of the send buffer (IN) 

(CHOICE) recvbuf      The starting address of the receive buffer, sendbuf and recvbuf 
cannot   overlap in memory. (OUT) 

INTEGER recvcounts(*) 

              Integer array specifying the number of elements in result distributed to 
  each process. Must be identical on all calling processes. (IN) 

INTEGER datatype     The data type of elements of the input buffer (handle) (IN) 

INTEGER op              The reduction operation (handle) (IN) 

INTEGER comm         The communicator (handle) (IN)     

INTEGER ierror           The Fortran return code 

Description   MPI_REDUCE_SCATTER first performs an element-wise reduction on 
  vector of count = Σ, recvcounts(i) elements in the send buffer defined by  
 sendbuf, count and datatype. Next, the resulting vector is split into n  
 disjoint segments, where n is the number of members in the group.   
 Segment i contains recvcounts(i) elements. the ith segment is sent to  
 process I and stored in the receive buffer defined by recvbuf,   
 recvcounts(i) and datatype. MPI_REDUCE_SCATTER is functionally  
 equivalent to MPI_REDUCE with count equal to the sum of   
 recvcounts(i) followed by MPI_SCATTERV with sendcounts equal to  
 recvcounts. All processes in comm need to call this routine.  

MPI_REDUCE_SCATTER 
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Sample Program 
          PROGRAM reduce_scatter 

          INCLUDE ‘mpif.h’ 

          INTEGER isend (6), irecv (3) 

          INTEGER ircnt (0:2) 

          DATA ircnt/1.2.3/ 

          CALL MPI_INIT (ierr) 

          CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr) 

          CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr) 

          DO i=1.6 

            isend (i) = i + myrank * 10 

          ENDDO 

          CALL MPI_REDUCE_SCATTER(isend, irecv, ircnt, MPI_INTEGER, 

        &                                                         MPI_SUM, MPI_COMM_WORLD, 
ierr) 

           PRINT *, ‘irecv =‘. irecv 

           CALL MPI_FINALIZE(ierr) 

           END 

    $ a.out -procs 3 
           0: irecv = 33     0      0  

           1: irecv = 36   39      0 

           2: irecv = 42   45    48     

MPI_REDUCE_SCATTER 

 
CALL MPI_REDUCE_SCATTER (sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror) 
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Scan 
     A scan or prefix-reduction operation performs partial reductions on distributed data. 

 

 C:  int MPI_Scan (void* sbuf, void* rbuf, int count, MPI_Datatype  
 datatype, MPI_OP op, MPI_Comm comm   

 

 FORTRAN: MPI_SCAN (sbuf, rbuf, count, datatype, op, comm, ierr) 

 
     Where: 

 sbuf: is the starting address of the send buffer, 
 rbuf: is the starting address of receive buffer, 
 count:  is the number of elements in input buffer, 
 datatype:  is the data type of elements of input buffer 
 op:  is the operation, and 
 comm:  is the group communicator. 

MPI_SCAN 
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Parameters 
 (CHOICE) sendbuf    The starting address of the send buffer (IN) 
 (CHOICE) recvbuf     The starting address of the receive buffer, 

sendbuf and recvbuf 
                                                 cannot overlap in memory (OUT) 

 INTEGER count          The number of elements in sendbuf (IN) 
 INTEGER datatype     The data type of elements of sendbuf (handle) (IN) 
 INTEGER op               The reduction operation (handle) (IN) 
 INTEGER comm         The communicator (handle) (IN) 
 INTEGER ierror           The Fortran return code  

 
Sample program 

 PROGRAM scan 
 INCLUDE ‘mpif.h’ 
 CALL MPI_INIT (ierr) 
 CALL MPI_COMM_SIZE (MPI_COMM_WORLD, nprocs, ierr) 
 CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr) 
 isend = myrank + 1 
 CALL MPI_SCAN (isend, irecv, 1, MPI_INTEGER,  

   &                                       MPI_SUM, MPI_COMM_WORLD, ierr) 
 PRINT *, ‘irecv =‘ irecv 
 CALL MPI_FINALIZE(ierr) 
 END      

Sample execution 
   $ a.out -procs 3 

 0: irecv = 1 
 0: irecv = 3 
 0: irecv = 6 

 
 
 
 

 
 
 

  

 rank=0 rank=1  rank=2  
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Figure. MPI_SCAN 
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count  

count  

comm 

sendbuf sendbuf 

op op 

MPI_SCAN 
 
Usage:  CALL MPI_SCAN (sendbuf, recvbuf, count, datatype, op, comm, ierror) 
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User-defined Operations 
 
User can define his/her own reduce operation 
Makes use of the MPI_OP_CREATE function 
 
Performance Issues 
 
A great deal of hidden communication takes place with 
collective communication. Performance depends greatly 
on the particular implementation of MPI. Because there 
may be forced synchronization, not always best to use 
collective communication. 
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Barrier Synchronization 

Two types of synchronization: 
 

 Implicit synchronization 
 Explicit synchronization: MPI_BARRIER 

 
MPI provides a function call, MPI_BARRIER, to 
synchronize all processes within a communicator. 
 
A barrier is simply a synchronization primitive. A 
node calling it will be blocked until all the nodes 
within the group have called it. 
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Barrier Synchronization 

The syntax of MPI_BARRIER for both C and Fortran program is: 
 

 - C: 
       MPI_Barrier (MPI_Comm comm) 

 
 - FORTRAN 
  MPI_BARRIER (comm, ierr) 

 
where: 

 MPI_Comm:  is an MPI predefined stucture of communicators, 
 comm:   is an integer denoting a communicator 
 ierr:   is an integer return error code. 
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Hands-on 
https://www.msi.umn.edu/content/mpi-hands-workshop 

 
# Get example and build 

 cp -r /home/tech/public/examples/hello_mpi . 
 cd hello_mpi               
 module load intel    impi 
 make 

                                                                                
# Run interactively 

 mpirun -np 4 ./hello 
 
# Set the following for large-memory jobs 
           ulimit -s unlimited 
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• The University of Minnesota is an equal opportunity educator and employer. This PowerPoint is available in alternative 
formats upon request. Direct requests to Minnesota Supercomputing Institute, 599 Walter library, 117 Pleasant St. SE, 

Minneapolis, Minnesota, 55455, 612-624-0528. 

THANK YOU 
 

More info at  

www.msi.umn.edu 
612-626-0802 

• © 2009 Regents of the University of Minnesota. All rights 
reserved. 

• Supercomputing Institute 
• for Advanced Computational Research 


