
• Supercomputing Institute
• for Advanced Computational Research

Parallel Programming Using MPI

David Porter & Drew Gustafson

(612) 626-0802
help@msi.umn.edu

October 20, 2016

 acroread /home/dhp/public/mpi.pdf

• Supercomputing Institute
• for Advanced Computational Research

• Supercomputing Institute
• for Advanced Computational Research

Agenda

• 10:00-10:15 Introduction to MSI Resources
• 10:15-10:30 Introduction to MPI
• 10:30-11:30 Blocking Communication
• 11:30-12:00 Hands-on

• 12:00- 1:00 Lunch

•  1:00- 1:45 Non-Blocking Communication
•  1:45- 2:20 Collective Communication
•  2:20- 2:45 Hands-on
•  2:45- 2:50 Break
•  2:50- 3:30 Collective Computation and Synchronization
•  3:30- 4:00 Hands-on

• Supercomputing Institute
• for Advanced Computational Research

• Supercomputing Institute
• for Advanced Computational Research

Introduction

• Supercomputing Institute
• for Advanced Computational Research

• Supercomputing Institute
• for Advanced Computational Research

Mesabi
HP Linux Cluster

750+ compute nodes
Each node has 2 x 12-core 2.5 GHz Intel Haswell processors
18,750+ cores
711+ Tflop aggregate performance

From 64 GB to 1 TB of memory per node
Aggregate memory: 67+ TB of RAM

40 GPU nodes:
2 Nvidia Tesla K40 GPUs

FDR/EDR Infiniband interconnect
è 5+ GB/s node-to-node communication

IB connect to Panasuas global file system

•  https://www.msi.umn.edu/content/mesabi

• Supercomputing Institute
• for Advanced Computational Research

• Supercomputing Institute
• for Advanced Computational Research

Itasca

HP Linux Cluster

1091 compute nodes
 2 quad-core 2.8 GHz Intel Nehalem processors
 24 GB of memory per node

Total of 8,728 cores
Aggregate of 26 TB of RAM

QDR Infiniband interconnect
è3+ GB/s none-to-node communication

•  https://www.msi.umn.edu/content/itasca

• Supercomputing Institute
• for Advanced Computational Research

• Supercomputing Institute
• for Advanced Computational Research

Serial ! one statement at a time
 one thread of execution, and
 one process

Parallel ! multiple concurrent statements
 multiple threads of execution, and/or
 one or more processes

Parallel Programming

Involves:
Decomposing work into many tasks
Distributing tasks to multiple threads or processes
Threads/processes work simultaneously
Coordinating work and communication of threads

Considerations
Type of parallel architecture being used
Type of communication needed between tasks

Introduction to parallel programming

• Supercomputing Institute
• for Advanced Computational Research

Parallel Programming

Uses
 Multiple processors & threads
 Multiple cores
 Network (distributed memory machines, cluster, etc.)
 Environment to create and manage parallel processing
 Operating System

Parallel Programming Paradigms
 Distributed memory: multiple processes MPI
 Shared Memory: multiple threads OpenMP

• Supercomputing Institute
• for Advanced Computational Research

Hardware Considerations
Memory architectures
 Shared Memory (NUMA)
 Distributed Memory
 Cluster of Shared Memory “nodes”

Inter-node communication is required to:
 Convey information and data between nodes
 Start, stop, & synchronize processes across nodes

• Supercomputing Institute
• for Advanced Computational Research

Only one processor can access
the shared memory location at a
time.

Synchronization achieved by
controlling tasks reading from
and writing to the shared
memory

Advantages:
Easy for user to use efficiently,
data sharing among tasks is fast, …

Disadvantages:
Memory is bandwidth limited,
Total memory limited to one node

Shared Memory

• Supercomputing Institute
• for Advanced Computational Research

Data is shared across network
using message passing

User code drives communication

Advantages:
Scalability, Each processor can
rapidly access its own memory
without interference

Disadvantages:
Programmer responsible for
send/receive data between
processes

Distributed Memory

• Supercomputing Institute
• for Advanced Computational Research

Compute Cluster

Mem 3
P1

P3

P2

P4

Node3

Mem 4
P1

P3

P2

P4

Node4

Mem 2
P1

P3

P2

P4

Node2

Mem 1
P1

P3

P2

P4

Node1 Network

Shared Memory

• Supercomputing Institute
• for Advanced Computational Research

 Message Passing
MPI : Message Passing Interface
•  A message passing library specification
•  Model for distributed memory platforms
•  Not a compiler
•  For multi-core, clusters, and heterogeneous networks
•  Permits development of parallel software libraries
•  Provides access to advanced parallel hardware
•  End uses

 Applications
 Libraries

 Toolkits

• Supercomputing Institute
• for Advanced Computational Research

MPI

•  Widely accepted standard for distributed memory computing
•  Support by all major vendors
•  Efficient implementations exists for most parallel hardware
•  Code that uses MPI is highly portable
•  Very extensive and flexible interface that leaves most of the

implementation details up to vendors
•  Just a small subset of the functions (6 routines) can be used

to write many applications

• Supercomputing Institute
• for Advanced Computational Research

Parallel programming paradigms

SPMD (Single Program Multiple Data)
• All processes follow essentially the same execution path
• Data-driven execution

MPMD (Multiple Programs Multiple Data)
• Master and slave processes follow distinctly different
execution paths
• Heterogeneous computing (GPU, PHI, …)

MPI supports both

• Supercomputing Institute
• for Advanced Computational Research

MPI Blocking Communication

• Supercomputing Institute
• for Advanced Computational Research

Sending and Receiving Messages

Basic message passing :
 One process send a message
 Another process receives the message.

Questions:
• To whom is data sent?
• Where is the data?
• What type of data is sent?
• How much data is sent?
• How does the receiver identify it?

Process 0 Process 1

Send Receive
A:

B:

• Supercomputing Institute
• for Advanced Computational Research

Message is divided into data and envelope

data

 buffer
 count
 data type

envelope
 process identifier (source/destination rank)
 message tag
 communicator

• Supercomputing Institute
• for Advanced Computational Research

MPI Calling Conventions

Fortran Bindings:
 Call MPI_XXXX (…, ierror)

•  Case insensitive
•  Almost all MPI calls are subroutines
•  ierror is always the last parameter
•  Program must include ‘mpif.h’

C Bindings:

 int ierror = MPI_Xxxxx (…)

•  Case sensitive (as it always is in C)
•  All MPI calls are functions: most return integer error code
•  Program must include “mpi.h”
•  Parameters are passed by value ! pass pointers to data buffers

• Supercomputing Institute
• for Advanced Computational Research

MPI Basic Send/Receive

Blocking send:

MPI_Send (buffer, count, datatype, dest, tag, comm)

Blocking receive:

MPI_Recv (buffer, count, datatype, source, tag, comm, status)

• Supercomputing Institute
• for Advanced Computational Research

MPI C Datatypes

MPI datatype	 C datatype	

MPI_CHAR	 char	
MPI_SHORT	 signed short int	
MPI_INT	 signed int	
MPI_LONG	 signed long int	
MPI_UNSIGNED_CHAR	 unsigned char	
MPI_UNSIGNED_SHORT	 unsigned short int	
MPI_UNSIGNED_LONG	 unsigned long int	
MPI_UNSIGNED	 unsigned int	
MPI_FLOAT	 float	
MPI_DOUBLE	 double	
MPI_LONG_DOUBLE	 long double	
MPI_BYTE	 byte	
MPI_PACKED	

• Supercomputing Institute
• for Advanced Computational Research

MPI Fortran Datatypes

MPI FORTRAN	 FORTRAN datatypes	
MPI_INTEGER	 INTEGER	

MPI_REAL	 REAL	

MPI_REAL8	 REAL*8	

MPI_DOUBLE_PRECISION	 DOUBLE PRECISION	

MPI_COMPLEX	 COMPLEX	

MPI_LOGICAL	 LOGICAL	

MPI_CHARACTER	 CHARACTER	

MPI_BYTE	

MPI_PACKED	

• Supercomputing Institute
• for Advanced Computational Research

MPI Process Identifier

•  MPI Application: runs on a group of processes.
•  RANK: one processes in this group
•  Rank NUMBER: unique number for the process

 In MPI communication:
•  Destination is specified by rank number
•  Can point to all ranks: MPI_ANY_SOURCE

•  Processes are named according to their rank in the group
•  Can have more than one group in an MPI application
•  Groups are pointed to by a “communicator”

• Supercomputing Institute
• for Advanced Computational Research

MPI Communicators

•  A communicator
 denotes a group of processes in an MPI application

•  MPI_COMM_WORLD
 predefined communicator

 includes all processes in an MPI application

•  New communicators

 can be created in an MPI program
 can point to some or all MPI “ranks
 can point to a re-ordering of ranks

•  Most MPI programs only use MPI_COMM_WORLD

• Supercomputing Institute
• for Advanced Computational Research

MPI Message Tag

Tags allow programmers to
•  Organize / classify MPI messages
•  Distinguish messages from the same source

The MPI standard guarantees that tags are
•  integers in the range 0 ~ 32,767 (at least)
•  most implementations allow a much larger range of tags
•  upper bound on tag value: MPI_TAG_UB

MPI_ANY_TAG can be used as a wild card

• Supercomputing Institute
• for Advanced Computational Research

MPI Blocking Communication Semantics

•  MPI_SEND does not complete until buffer is empty
(available for reuse)

•  MPI_RECV does not complete until buffer is full
(available for use)

•  Completion of communication generally depends on
the message size, system memory & network

•  Blocking communication is simple to use but can be
slow or cause deadlocks (if you are not careful).

•  A blocking or nonblocking send can be paired to a
blocking or nonblocking receive

• Supercomputing Institute
• for Advanced Computational Research

Fortran Example

program MPI_small
include ‘mpif.h’
integer rank, size, ierror, tag, status(MPI_STATUS_SIZE)
character(12) message

call MPI_INIT(ierror)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
call MPI_COMM_RANK(MPI_COMM_WORLD, rank,ierror)
tag = 100
if(rank .eq. 0) then
 message = ‘Hello, world’
 do i=1, size-1
 call MPI_SEND(message, 12, MPI_CHARACTER, i, tag,

 MPI_COMM_WORLD, ierror)
 enddo
Else
 call MPI_RECV(message, 12, MPI_CHARACTER, 0, tag,

 MPI_COMM_WORLD, status, ierror)
endif
print*, ‘node’ rank, ‘:’, message
call MPI_FINALIZE(ierror)
end

• Supercomputing Institute
• for Advanced Computational Research

#include<stdio.h>
#include “mpi.h”
main(int argc, char **argv)
{
int rank, size, tag, rc, i;
MPI_Status status;
char message[20]

rc = MPI_Init(&argc,&argv)
rc = MPI_Comm_size(MPI_COMM_WORLD,&size);
rc = MPI_Comm_rank(MPI_COMM_WORLD,&rank);
tag = 100;
if(rank == 0) {
 strcpy(message, “Hello, world”);
 for (i=1; i<size; i++)

 rc = MPI_Send(message, 13, MPI_CHAR, i, tag, MPI_COMM_WORLD);
}
else
 rc = MPI_Recv(message, 13, MPI_CHAR, 0, tag, MPI_COMM_WORLD, &status);

print(“node %d : %.13s\n”, rank,message);
rc = MPI_Finalize();
}

C Example

• Supercomputing Institute
• for Advanced Computational Research

Hands-on
https://www.msi.umn.edu/content/mpi-hands-workshop

Get example and build

 cp -r /home/tech/public/examples/hello_mpi .
 cd hello_mpi
 module load intel impi
 make

Run interactively

 mpirun -np 4 ./hello

Set the following for large-memory jobs
 ulimit -s unlimited

• Supercomputing Institute
• for Advanced Computational Research

• Supercomputing Institute
• for Advanced Computational Research

MPI Non-Blocking Communication

• Supercomputing Institute
• for Advanced Computational Research

Blocking Communication

MPI_SEND does not complete until buffer is copied out. Time
depends on send mode and MPI implementation.

MPI_RECV does not complete until the message is
completely received.

Completion of communication generally depends on the
message size and the system buffer size.

Blocking communication is simple to use but may be prone to
deadlocks.

Initiation of blocking communication may suffer from high
latency à poor scaling to many MPI ranks.

• Supercomputing Institute
• for Advanced Computational Research

Deadlocks

Two or more processes (MPI ranks) wait for each other to
act before they act. They each stop before getting to the
part of the code where they would have taken the action
needed for other ranks to keep going.

Common example:

 Two ranks call a blocking mpi_recv to each other.
 Each waits for data form the other.
 Neither ever sends it.

To avoid deadlocks

 Different ordering of calls between ranks
 Non-blocking calls
 Use of MPI_SendRecv
 Buffered mode

• Supercomputing Institute
• for Advanced Computational Research

Send modes

Standard Mode (MPI_Send)
The standard MPI Send, the send will not complete until it is safe to modify
the send buffer: buffer has at least been copied to a supplied system
buffer. MPI may or may not buffer: depends on many details.

Synchronous mode (MPI_Ssend)
The send does not complete until after a matching receive has been
posted

Buffered mode (MPI_Bsend)
User supplied buffer space is used for system buffering.
The send will complete as soon as the send buffer is copied to the user
supplied buffer.

Ready mode (MPI_Rsend)
The send will send eagerly under the assumption that a matching receive
has already been posted (an error results otherwise).

• Supercomputing Institute
• for Advanced Computational Research

Non Blocking Communication

•  Non-blocking calls return immediately
•  A completion call is needed to ensure the operation is finishes.

For example:

 MPI_ISEND(start, count, datatype, dest, tag, comm, request1)
 MPI_WAIT(request1, status)

 MPI_IRECV(start, count, datatype, src, tag, comm, request2)
 MPI_WAIT(request2, status)

Or use for all non-blocking communications

 MPI_WAITALL (count, request_array, status_arrsy)

One can also test the status without waiting using MPI_TEST

 MPI_TEST(request, flag, status)

• Supercomputing Institute
• for Advanced Computational Research

Non Blocking Communication Example

...
<sbuf is ready to send>
Isend(sbuf, ... B, ... Hsend)
<do not change sbuf>
...
<can do work here>
<can do other MPI calls>
...
Wait(Hsend, ...)
<safe to modify sbuf>
...

...
Irecv(rbuf, ... A, ... Hrecv)
<do nothing with rbuf>
...
<can do work here>
<can do other MPI calls>
...
Wait(Hrecv, ...)
<can use rbuf>
...

Process A Process B

Transfer
happens

here

Illustrates conservative use of standard Isend & Irecv calls

Time

• Supercomputing Institute
• for Advanced Computational Research

Non-blocking Send Syntax

C:
 int MPI_Isend(void* buf, int count, MPI_Datatype datatype, int dest, int tag,

 MPI_Comm comm, MPI_Request *request)

FORTRAN:
 MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG,

 COMM, REQUEST, IERROR)

 [IN buf] initial address of send buffer (any data type)
 [IN count] number of elements in send buffer (integer)
 [IN datatype] datatype of each send buffer element (defined constant)
 [IN dest] rank of destination (integer)
 [IN tag] message tag (integer)
 [IN comm] communicator (handle)
 [OUT request] communication request (handle)

• Supercomputing Institute
• for Advanced Computational Research

Non-blocking Recv Syntax

C:
 int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source, int tag,
 MPI_Comm comm, MPI_Request *request)

FORTRAN:
 MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG,
 COMM, REQUEST, IERROR)

 [OUT buf] initial address of receive buffer (choice)
 [IN count] number of elements in receive buffer (integer)
 [IN datatype] datatype of each receive buffer element (defined constant)
 [IN dest] rank of source (integer)
 [IN tag] message tag (integer)
 [IN comm] communicator (handle)
 [OUT request] communication request (handle)

• Supercomputing Institute
• for Advanced Computational Research

Non-blocking Communication completion calls

Wait: MPI_WAIT or MPI_WAITALL
 Used for non-blocking Sends and Receives
 Suspends until an operation completes

MPI_WAIT syntax

 Fortran call MPI_WAIT (request, status, ierror)
 C: ierror = MPI_Wait (request, status)

Test: MPI_TEST
Returns immediately with information about a non-blocking send or
receive. Gives immediate answer to: is send or receive done?

MPI_TEST Syntax
 Fortan: call MPI_TEST (request, flag, status, ierror)
 C: ierror = MPI_Test (request, flag, status)

• Supercomputing Institute
• for Advanced Computational Research

Non-blocking Communication completion calls

A request object can be deallocated at any time
Use the following operation:

 MPI_REQUEST_FREE(request)
 [INOUT request] communication request (handle)

 C: ierror = MPI_Request_free(MPI_Request *request)

FORTRAN: call MPI_REQUEST_FREE(REQUEST, IERROR)

• Supercomputing Institute
• for Advanced Computational Research

Non-blocking Communication Examples

Example: Simple usage of nonblocking operations and MPI_WAIT

IF(rank.EQ.0) THEN

 CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)
 ****do some computation to mask latency****
 CALL MPI_WAIT(request, status, ierr)

ELSE
 CALL MPI_IRECV(a(1), 10, MPI_REAL, 0, tag, comm, Request, ierr)
 ****do some computation to mask latency****
 CALL MPI_WAIT(Request, status, ierr)

END IF

• Supercomputing Institute
• for Advanced Computational Research

 INCLUDE “mpif.h”
 INTEGER ierror, rank, size, status(MPI_STATUS_SIZE), requests (2)

 CALL MPI_INIT(ierror)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
 IF(rank.eq.0) THEN
 c = 9.2
 a = 4.2
 b = 8.4
 CALL MPI_ISEND(a, 1, MPI_REAL,1,101,MPI_COMM_WORLD, requests(1), ierror)
 ! Can do computations which do not overwrite a
 b = b + a
 CALL MPI_WAIT(requests(1), status, ierror)
 d = b + c
 ELSE
 a = 14.2
 s = 18.4
 CALL MPI_IRECV(c,1,MPI_REAL,0,101,MPI_COMM_WORLD, requests(2), ierror)
 ! Do not read from or overwrite c till wait
 CALL MPI_WAIT(requests(2), status,ierror)
 c = a + c
 END IF

 CALL MPI_FINALIZE(ierror)
 STOP
 END

• Supercomputing Institute
• for Advanced Computational Research

Non-blocking Communication

Gain
•  Avoid Deadlocks
•  Decrease Synchronization Overhead
•  Can Reduce System Overhead
•  Post non-blocking sends/receives early and do waits late
•  Recommended: do MPI_IRECV before the MPI_Rsend is called.

Be careful with reads and writes
–  Avoid writing to send buffer between MPI_ISEND and MPI_WAIT
–  Avoid reading or writing in receive buffer between MPI_IRECV and

MPI_WAIT

• Supercomputing Institute
• for Advanced Computational Research

MPI
Collective Communication

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication

Three Classes of Collective Operations

Data movement:
broadcast, gather, all-gather, scatter, and all-to-all

Collective computations (reductions):
Data from all members in a group is “reduced” to produce a global
result (min, max, sum, ...).

Synchronization:
processes wait until all members of the group have reached the
synchronization point

Every process must call the same collective communication
function.

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication Broadcast

One rank sends (broadcasts) a block of data to all the
ranks in a group.

A0	 A0	

A0	

A0	

A0	

broadcast

processes

data

0

2

3

1

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication Broadcast

Syntax
 C: int MPI_Bcast (void* buffer, int count, MPI_Datatype datatype, int root,

 MPI_Comm comm)
 Fortran: MPI_BCAST (buffer, count, datatype, root, comm, ierr)

where:
 buffer: is the starting address of a buffer
 count: is an integer indicating the number of data elements in the buffer
 datatype: is MPI defined constant indicating the data type of the elements

in the buffer
 root: is an integer indicating the rank of broadcast root process
 comm: is the communicator

The MPI_BCAST must be called by each process in the group,
specifying the same comm and root. The message is sent from the root
process to all processes in the group.

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication
Gather

Data is distributed throughout all processors in the group.
Collect distributed data to a specified process (rank).

100 100 100
100 100 100

all processes

at root

real a(100), rbuf(MAX)
call mpi_gather(a, 100, MPI_REAL, rbuf, 100, MPI_REAL, root, comm, ierr)

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication
Gather

Syntax
C:
 int MPI_Gather(void* sbuf, int scount, MPI_Datatype stype, void* rbuf, int rcount,
 MPI_Datatype rtype, int root, MPI_Comm comm)

FORTRAN:
 MPI_GATHER (sbuf, scount, stype, rbuf, rcount, rtype, root, comm, ierr)
 where:

 sbuf: is the starting address of a buffer,
 scount: is the number of elements in the send buffer,
 stype: is the data type of send buffer elements,

 rbuf: is the address of the receive buffer
 rcount: is the number of elements for any single receive
 rtype: is the data type of the receive buffer elements
 root: is the rank of receiving process, and
 comm: is the communicator
 ierr: is error message

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication
Gather Example

INCLUDE ‘mpif.h’
DIMENSION A(25, 100), b(100), cpart(25), ctotal(100)
INTEGER root, rank
CALL MPI_INIT(ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
root=1
Call set_a(A,rank)
Call set_b(B)

DO I=1,25
cpart(I)=0.
DO K=1,100
cpart(I)=cpart(I)+A(I,K)*b(K)
END DO
END DO

CALL MPI_GATHER (cpart, 25, MPI_REAL, ctotal, 25,
& MPI_REAL, root, MPI_COMM_WORLD, ierr)
If(rank.eq.root) print*, (ctotal(I),I=1,100)
CALL MPI_FINALIZE(ierr)
END

 A * b = c

Process 1 1

Process 2 2

Process 3 3

Process 4 4

- A: Matrix distributed by rows
- B: Vector shared by all process
- C: results to get by the root process

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication
Scatter

Distribute data of to all the processes (ranks) in a group.

100 100 100

100 100 100

all processes

at root

real sbuf(MAX), rbuf(100)
call mpi_scatter(sbuf, 100, MPI_REAL, rbuf, 100, MPI_REAL, root, comm, ierr)

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication
Scatter Syntax

C:
 int MPI_Scatter(void* sbuf, int scount, MPI_Datatype stype, void* rbuf,
 int rcount, MPI_Datatype rtype, int root, MPI_Comm comm)

FORTRAN:
 MPI_SCATTER(sbuf, scount, stype, rbuf, rcount, rtype, root, comm, ierr)
where:

 sbuf: is the address of the send buffer,
 scount: is the number of elements sent to each process,
 stype: is the data type of the send buffer elements,
 rbuf: is the address of the receive buffer,
 rcount: is the number of elements in the receive buffer,
 rtype: is the data type of the receive buffer elements,
 root: is the rank of the sending process, and
 comm: is the communicator

Note: sbuf is significant for root process only

• Supercomputing Institute
• for Advanced Computational Research

 Sample execution
 PROGRAM scatter $ mpirun -np 3 ./a.out
 INCLUDE ‘mpif.h’ 0: irecv = 1
 INTEGER isend(3) 1: irecv = 2
 CALL MPI_INIT(ierr) 2: irecv = 3
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
 IF (myrank= = 0) THEN
 DO i=1, nprocs
 isend (i) = i
 ENDDO

 end if
 CALL MPI_SCATTER (isend, 1, MPI_INTEGER,
 & irecv, 1, MPI_INTEGER, 0,
 & MPI_COMM_WORLD, ierr)
 PRINT *, ‘irecv = ‘, irecv
 CALL MPI_FINALIZE(ierr)
 END

 rank=0=root rank=1 rank=2

 sendcount

 sendbuf

 recvcount

 recvbuf recvbuf recvbuf

1
2
3

1 3 2

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication
All Gather

MPI_ALLGATHER can be thought of as MPI GATHER where all processes,
not only one, receive the result.

 data

 allgather

 processes

The syntax of MPI_ALLGATHER is similar to MPI_GATHER. However, the
argument root is dropped

A0	

B0	

C0	

D0	

A0	 B0	 C0	 D0	

A0	 B0	 C0	 D0	

A0	 B0	 C0	 D0	

A0	 B0	 C0	 D0	

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication
All Gather Syntax

C:
 int MPI_Allgather (void* sbuf, int scount, MPI_Datatype stype, void* rbuf, int rcount,

 MPI_Datatype rtype, MPI_Comm comm)

FORTRAN

 MPI_ALLGATHER (sbuf, scount, stype, rbuf, rcount, rtype, comm, ierr)

Example: back to the previous “gather” example, what should we do if
every process needs the results of array Ctotal for next computation?

Replace

 CALL MPI_GATHER (cpart, 25, MPI_REAL, ctotal, 25,
 MPI_REAL, root, MPI_COMM_WORLD, ierr)

With
 CALL MPI_ALLGATHER (cpart, 25, MPI_REAL, ctotal, 25,
 MPI_REAL, MPI_COMM_WORLD, ierr)

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication
Alltoall

A0	 B0	 C0	 D0	 E0	 F0	

A1	 B1	 C1	 D1	 E1	 F1	

A2	 B2	 C2	 D2	 E2	 F3	

A3	 B3	 C3	 D3	 E3	 F3	

A4	 B4	 C4	 D4	 E4	 F4	

A5	 B5	 C5	 D5	 E5	 F5	

A0	 A1	 A2	 A3	 A4	 A5	
B0	 B1	 B2	 B3	 B4	 B5	

C0	 C1	 C2	 C3	 C4	 C5	

D0	 D1	 D2	 D3	 D4	 D5	

E0	 E1	 E2	 E3	 E4	 E5	

F0	 F1	 F2	 F3	 F4	 F5	

P
r
o
c
e
s
s
e
s

P
r
o
c
e
s
s
e
s

Data Data

Send Buffer Receive Buffer

• Supercomputing Institute
• for Advanced Computational Research

MPI Collective Communication
Alltoall Syntax

C:

 int MPI_Alltoall(void* sbuf, int scount, MPI_Datatype stype, void* rbuf, int

 rcount, MPI_Datatype rtype, MPI_Comm comm)

FORTRAN:

 MPI_ALLTOALL (sbuf, scount, stype, rbuf, rcount, rtype, comm, ierr)

where:

 sbuf: is the starting address of send buffer,

 scount: is the number of elements sent to each process,

 stype: is the data type of send buffer elements,

 rbuf: is the address of receive buffer,

 rcount: is the number of elements received from any process,

 rtype: is the data type of receive buffer elements, and

 comm: is the group communicator.

• Supercomputing Institute
• for Advanced Computational Research

 PROGRAM alltoall
 INCLUDE ‘mpif.h’
 INTEGER isend (3), irecv (3)
 CALL MPI_INIT(ierr)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
 CALL MPI_COMM_RANK(MPI_COMM_WORLD,

 & myrank, ierr)
 DO i=1, nprocs
 isend (i) = i + nprocs * myrank
 ENDDO
 PRINT *, ‘isend =‘, isend
 CALL MPI_ALLTOALL(isend, 1, MPI_INTEGER,

 & irecv, 1, MPI_INTEGER,
 & MPI_COMM_WORLD, ierr)

 PRINT *, ‘irecv =‘, irecv
 CALL MPI_FINALIZE(ierr)
 END

 rank=0 rank=1 rank=2

sendcount

 send buf send buf

recvcount

 recvbuf recvbuf recvbuf

1 4 7
2 5 8
3 6 9

1
4

2
7

5
8 9

6
3

Figure of MPI_ALLTOALL

 $ a.out -procs 3

 0: isend 1 2 3
 1: isend 4 5 6
 2: isend 7 8 9
 0: irecv 1 4 7
 1: irecv 2 5 8
 2: irecv 3 6 9

• Supercomputing Institute
• for Advanced Computational Research

Hands-on
https://www.msi.umn.edu/content/mpi-hands-workshop

Get example and build

 cp -r /home/tech/public/examples/hello_mpi .
 cd hello_mpi
 module load intel impi
 make

Run interactively

 mpirun -np 4 ./hello

Set the following for large-memory jobs
 ulimit -s unlimited

• Supercomputing Institute
• for Advanced Computational Research

• Supercomputing Institute
• for Advanced Computational Research

MPI
Collective Computations and Synchronization

• Supercomputing Institute
• for Advanced Computational Research

MPI_Reduce

These routines perform a global operation across all
members of a group

The partial result in each process in the group is combined
in one specified process or all the processes using some
desired function.

Three reduces routines:
MPI_REDUCE returns results to a single process;
MPI_ALLREDUCE returns results to all processes in the
group;
MPI_REDUCE_SCATTER scatters a vector, which results
in a reduce operation, across all processes.

• Supercomputing Institute
• for Advanced Computational Research

Fortran

 MPI_REDUCE (sbuf, rbuf, count, stype, op, root, comm, ierr)

 MPI_ALLREDUCE (sbuf, rbuf, count, stype, op, comm, ierr)

 MPI_ REDUCE_SCATTER (sbuf, rbuf, rcounts, stype, op, comm, ierr)

where

 sbuf: is the address of send buffer,
 rbuf: is the address of receive buffer,
 count: is the number of elements in send buffer,
 stype: is the data type of elements of send buffer,
 op: is the reduce operation (which may be MPI predefined, or your own),
 root: is the rank of the root processes, and

 comm: is the group communicator.

• Supercomputing Institute
• for Advanced Computational Research

C:

 int MPI_Reduce (void* sbuf, void* rbuf, int count, MPI_Datatype stype,
 MPI_Op op, int root, MPI Comm comm)

 int MPI_Allreduce(void* sbuf, void* rbuf, int count, MPI Datatype stype, MPI_Op op,
 MPI Comm comm)

 int MPI_Reduce_scatter (void* sbuf, void* rbuf, int* rcounts, MPI Datatype stype,
 MPI_Op op, MPI Comm comm)

where

 sbuf: is the address of send buffer,
 rbuf: is the address of receive buffer,
 count: is the number of elements in send buffer,
 stype: is the data type of elements of send buffer,
 op: is the reduce operation (which may be MPI predefined, or your own),
 root: is the rank of the root processes, and
 comm: is the group communicator.

• Supercomputing Institute
• for Advanced Computational Research

MPI Predefined Reduce Operations

Name Meaning	 C type	 FORTRAN type	

MPI_MAX	 maximum	 integer, float	 integer, real, complex	

MPI_MIN	 minimum	 integer, float	 integer, real, complex	

MPI_SUM	 sum	 integer, float	 integer, real, complex	

MPI_PROD	 product	 integer, float	 integer, real, complex	

MPI_LAND	 logical and	 integer	 logical	

MPI_BAND	 bit-wise and	 integer, MPI_BYTE	 integer, MPI_BYTE	

MPI_LOR	 logical or	 integer	 logical	

MPI_BOR	 bit-wise or	 integer, MPI_BYTE	 integer, MPI_BYTE	

MPI_LXOR	 logical xor	 integer	 logical	

MPI_BXOR	 bit-wise xor	 integer MPI_BYTE	 integer, MPI_BYTE	

MPI_MAXLOC	 max value and location	 combination of int, float,
double, and long double	

combination of integer, real,
complex, double precision	

MPI_MINLOC	 min value and location	 combination of int, float,
double, and long double	

combination of integer, real
complex, double precision	

• Supercomputing Institute
• for Advanced Computational Research

MPI_REDUCE

Usage: CALL MPI_REDUCE (sendbuf, recvbuf, count, datatype, op, root, comm, ierror)

Parameters
(CHOICE) sendbuf The address of the send buffer (IN)
(CHOICE) recvbuf The address of the receive buffer, sendbuf and recvbuf cannot overlap in memory. (significant only at root) (OUT)
INTEGER count The number of elements in the send buffer (IN)
INTEGER datatype The data type of elements of the send buffer (handle) (IN)
INTEGER op The reduction operation (handle) (IN)
INTEGER root The rank of the root process (IN)
INTEGER comm The communicator (handle) (IN)
INTEGER ierror The Fortran return code

 comm

rank=0=root rank=1 rank=2

 sendbuf sendbuf sendbuf

 op op

 recvbuf

count

count

1 3 2

6 = 1 + 2 + 3

+ +

Figure: MPI_REDUCE for Scalar Variables

Sample Program
 PROGRAM reduce
 include ‘mpif.h’
 CALL MPI_INIT (ierr)
 CALL MPI_COMM_SIZE (MPI_COMM_WORLD, nprocs, ierr)
 CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
 isend= myrank+1
 CALL MPI_REDUCE (isend, irecv, 1, MPI_INTEGER,
 & MPI_SUM, 0, MPI_COMM_WORLD, ierr)
 IF (myrank= =0) THEN
 PRINT *, ‘irecv =‘, irecv
 endif
 CALL MPI_FINALIZE (ierr)
 END

Sample execution
 % a.out -procs 3
 % 0: irecv = 6

• Supercomputing Institute
• for Advanced Computational Research

 Sample program
 PROGRAM allreduce
 INCLUDE ‘mpif.h’
 CALL MPI_INIT (ierr)
 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
 CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
 isend = myrank + 1
 CALL MPI_ALLREDUCE (isend, irecv, 1, MPI_INTEGER, MPI_SUM,
 & MPI_COMM_WORLD, ierr)
 PRINT *, ‘irecv =‘, irecv
 CALL MPI_FINALIZE (ierr)
 END

 Sample execution
 $ a.out -procs 3

 0: irecv = 6

 1: irecv = 6
 2: irecv = 6

 rank=0 rank=1 rank=2

 send buf send buf

 recvbuf recvbuf recvbuf

1 2 3

6 = 1 +2 + 3 6 = 1 +2 + 3 6 = 1 +2 + 3

+ + +

count

count

comm

MPI_ALLREDUCE

Usage: CALL MPI_ALLREDUCE (sendbuf, recvbuf, count, datatype, op, comm, ierror)

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)
(CHOICE) recvbuf The starting address of the receive buffer,,

 sendbuf and recvbuf cannot overlap in memory (OUT)
INTEGER count The number of elements in the send buffer (IN)
INTEGER datatype The data type of elements of the send buffer (handle)

(IN)
INTEGER op The reduction operation (handle)(IN)
INTEGER comm The communicator (handle) (IN)
INTEGER ierror The Fortran return code

• Supercomputing Institute
• for Advanced Computational Research

Usage: CALL MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror)

Parameters
(CHOICE) sendbuf The starting address of the send buffer (IN)

(CHOICE) recvbuf The starting address of the receive buffer, sendbuf and recvbuf
cannot overlap in memory. (OUT)

INTEGER recvcounts(*)

 Integer array specifying the number of elements in result distributed to
 each process. Must be identical on all calling processes. (IN)

INTEGER datatype The data type of elements of the input buffer (handle) (IN)

INTEGER op The reduction operation (handle) (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description MPI_REDUCE_SCATTER first performs an element-wise reduction on
 vector of count = Σ, recvcounts(i) elements in the send buffer defined by
 sendbuf, count and datatype. Next, the resulting vector is split into n
 disjoint segments, where n is the number of members in the group.
 Segment i contains recvcounts(i) elements. the ith segment is sent to
 process I and stored in the receive buffer defined by recvbuf,
 recvcounts(i) and datatype. MPI_REDUCE_SCATTER is functionally
 equivalent to MPI_REDUCE with count equal to the sum of
 recvcounts(i) followed by MPI_SCATTERV with sendcounts equal to
 recvcounts. All processes in comm need to call this routine.

MPI_REDUCE_SCATTER

• Supercomputing Institute
• for Advanced Computational Research

 rank=0 rank=1 rank=2

recvcounts(0
)

recvcounts(1
)

recvcounts(2
)

1
2

13
12

4
3

6
15
14

16
5

11

26
25
24
23
22
21

48
45
42
39
36
33

45
39

33

48

42
36

+
op

sendbu
f

sendbu
f

recvbuf

recvbuf recvbuf

COMM

Fig.
MPI_REDUCE_
SCATTER

Sample Program
 PROGRAM reduce_scatter

 INCLUDE ‘mpif.h’

 INTEGER isend (6), irecv (3)

 INTEGER ircnt (0:2)

 DATA ircnt/1.2.3/

 CALL MPI_INIT (ierr)

 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)

 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

 DO i=1.6

 isend (i) = i + myrank * 10

 ENDDO

 CALL MPI_REDUCE_SCATTER(isend, irecv, ircnt, MPI_INTEGER,

 & MPI_SUM, MPI_COMM_WORLD,
ierr)

 PRINT *, ‘irecv =‘. irecv

 CALL MPI_FINALIZE(ierr)

 END

 $ a.out -procs 3
 0: irecv = 33 0 0

 1: irecv = 36 39 0

 2: irecv = 42 45 48

MPI_REDUCE_SCATTER

CALL MPI_REDUCE_SCATTER (sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror)

• Supercomputing Institute
• for Advanced Computational Research

Scan
 A scan or prefix-reduction operation performs partial reductions on distributed data.

 C: int MPI_Scan (void* sbuf, void* rbuf, int count, MPI_Datatype
 datatype, MPI_OP op, MPI_Comm comm

 FORTRAN: MPI_SCAN (sbuf, rbuf, count, datatype, op, comm, ierr)

 Where:

 sbuf: is the starting address of the send buffer,
 rbuf: is the starting address of receive buffer,
 count: is the number of elements in input buffer,
 datatype: is the data type of elements of input buffer
 op: is the operation, and
 comm: is the group communicator.

MPI_SCAN

• Supercomputing Institute
• for Advanced Computational Research

Parameters
 (CHOICE) sendbuf The starting address of the send buffer (IN)
 (CHOICE) recvbuf The starting address of the receive buffer,

sendbuf and recvbuf
 cannot overlap in memory (OUT)

 INTEGER count The number of elements in sendbuf (IN)
 INTEGER datatype The data type of elements of sendbuf (handle) (IN)
 INTEGER op The reduction operation (handle) (IN)
 INTEGER comm The communicator (handle) (IN)
 INTEGER ierror The Fortran return code

Sample program

 PROGRAM scan
 INCLUDE ‘mpif.h’
 CALL MPI_INIT (ierr)
 CALL MPI_COMM_SIZE (MPI_COMM_WORLD, nprocs, ierr)
 CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
 isend = myrank + 1
 CALL MPI_SCAN (isend, irecv, 1, MPI_INTEGER,

 & MPI_SUM, MPI_COMM_WORLD, ierr)
 PRINT *, ‘irecv =‘ irecv
 CALL MPI_FINALIZE(ierr)
 END

Sample execution
 $ a.out -procs 3

 0: irecv = 1
 0: irecv = 3
 0: irecv = 6

 rank=0 rank=1 rank=2

 recvbuf recvbuf recvbuf

1 2 3

1

Figure. MPI_SCAN

3 = 1 + 2 6 = 1 +2 + 3

+ + +

count

count

comm

sendbuf sendbuf

op op

MPI_SCAN

Usage: CALL MPI_SCAN (sendbuf, recvbuf, count, datatype, op, comm, ierror)

• Supercomputing Institute
• for Advanced Computational Research

User-defined Operations

User can define his/her own reduce operation
Makes use of the MPI_OP_CREATE function

Performance Issues

A great deal of hidden communication takes place with
collective communication. Performance depends greatly
on the particular implementation of MPI. Because there
may be forced synchronization, not always best to use
collective communication.

• Supercomputing Institute
• for Advanced Computational Research

Barrier Synchronization

Two types of synchronization:

 Implicit synchronization
 Explicit synchronization: MPI_BARRIER

MPI provides a function call, MPI_BARRIER, to
synchronize all processes within a communicator.

A barrier is simply a synchronization primitive. A
node calling it will be blocked until all the nodes
within the group have called it.

• Supercomputing Institute
• for Advanced Computational Research

Barrier Synchronization

The syntax of MPI_BARRIER for both C and Fortran program is:

 - C:
 MPI_Barrier (MPI_Comm comm)

 - FORTRAN
 MPI_BARRIER (comm, ierr)

where:

 MPI_Comm: is an MPI predefined stucture of communicators,
 comm: is an integer denoting a communicator
 ierr: is an integer return error code.

• Supercomputing Institute
• for Advanced Computational Research

Hands-on
https://www.msi.umn.edu/content/mpi-hands-workshop

Get example and build

 cp -r /home/tech/public/examples/hello_mpi .
 cd hello_mpi
 module load intel impi
 make

Run interactively

 mpirun -np 4 ./hello

Set the following for large-memory jobs
 ulimit -s unlimited

• Supercomputing Institute
• for Advanced Computational Research

• Supercomputing Institute
• for Advanced Computational Research

• The University of Minnesota is an equal opportunity educator and employer. This PowerPoint is available in alternative
formats upon request. Direct requests to Minnesota Supercomputing Institute, 599 Walter library, 117 Pleasant St. SE,

Minneapolis, Minnesota, 55455, 612-624-0528.

THANK YOU

More info at

www.msi.umn.edu
612-626-0802

• © 2009 Regents of the University of Minnesota. All rights
reserved.

• Supercomputing Institute
• for Advanced Computational Research

