Parallel Programming Using MPI

David Porter & Drew Gustafson

(612) 626-0802
help@msi.umn.edu

October 20, 2016

acroread /home/dhp/public/mpi.pdf

*Supercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover

Agenda

+10:00-10:15 Introduction to MSI Resources
*10:15-10:30 Introduction to MPI
10:30-11:30 Blocking Communication
-11:30-12:00 Hands-on

+12:00- 1:00 Lunch

+ 1:00- 1:45 Non-Blocking Communication

- 1:45- 2:20 Collective Communication

- 2:20- 2:45 Hands-on

+ 2:45- 2:50 Break

- 2:50- 3:30 Collective Computation and Synchronization
- 3:30- 4:00 Hands-on

*Supercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover

Introduction

*Supercomputing Institute UNIVERSITY OF MINNESOTA
«for Advanced Computational Research Driven to Discover

Mesabi
HP Linux Cluster

750+ compute nodes
Each node has 2 x 12-core 2.5 GHz Intel Haswell processors

18,750+ cores
711+ Tflop aggregate performance

From 64 GB to 1 TB of memory per node
Aggregate memory: 67+ TB of RAM '

40 GPU nodes:
2 Nvidia Tesla K40 GPUs

FDR/EDR Infiniband interconnect
=» 5+ GB/s node-to-node communication

IB connect to Panasuas global file system

* https://www.msi.umn.edu/content/mesabi

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

Driven to Discover

for Advanced Computational Research

ltasca

HP Linux Cluster

1091 compute nodes
2 quad-core 2.8 GHz Intel Nehalem processors
24 GB of memory per node

Total of 8,728 cores
Aggregate of 26 TB of RAM

QDR Infiniband interconnect
=» 3+ GB/s none-to-node communication

* https://www.msi.umn.edu/content/itasca

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

Driven to Discover

for Advanced Computational Research

Introduction to parallel programming

Serial = one statement at a time
one thread of execution, and
one process

Parallel & multiple concurrent statements
multiple threads of execution, and/or
one or more processes

Parallel Programming

Involves:

Decomposing work into many tasks

Distributing tasks to multiple threads or processes
Threads/processes work simultaneously
Coordinating work and communication of threads

Considerations
Type of parallel architecture being used
Type of communication needed between tasks

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Parallel Programming

Uses
Multiple processors & threads
Multiple cores
Network (distributed memory machines, cluster, etc.)
Environment to create and manage parallel processing
Operating System

Parallel Programming Paradigms
Distributed memory: multiple processes MPT
Shared Memory: multiple threads OpenMP

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Hardware Considerations

Memory architectures
Shared Memory (NUMA)
Distributed Memory
Cluster of Shared Memory "nodes”

Inter-node communication is required to:

Convey information and data between nodes
Start, stop, & synchronize processes across nodes

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Shared Memory

ohared Memory

MEMORY

*Supercomputing Institute
for Advanced Computational Research

Only one processor can access
the shared memory location at a
time.

Synchronization achieved by
controlling tasks reading from
and writing to the shared
memory

Advantages:
Easy for user to use efficiently,
data sharing among tasks is fast, ...

Disadvantages:

Memory is bandwidth limited,
Total memory limited to one node

M UNIVERSITY OF MINNESOTA

Driven to Discover

Distributed Memory

Data is shared across network
using message passing

User code drives communication

Distributed Memory

Advantages:

Scalability, Each processor can
MEMORY CPU MEMORY rapidly access its own memory
without interference

Disadvantages:
Programmer responsible for
CPU MEMORY .
MENORY send/receive data between
processes

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

Driven to Discover

for Advanced Computational Research

Compute Cluster

Network e ____2Y0qec ______ |

|
|
|
|
|
|
|
|
|
|
| Nodel ! Node2
|
|
|
|
|
|
|
|
|
|

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Message Passing

MPT : Message Passin? Interface
A message passing library specification

* Model for distributed memory platforms

« Not a compiler

« For multi-core, clusters, and heterogeneous networks
* Permits development of parallel software libraries
 Provides access to advanced parallel hardware

+ End uses

Applications

Libraries

Toolkits

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

for Advanced Computational Research

Driven to Discover

MPI

Widely accepted standard for distributed memory computing
Support by all major vendors

Efficient implementations exists for most parallel hardware
Code that uses MPI is highly portable

Very extensive and flexible interface that leaves most of the
iImplementation details up to vendors

« Just a small subset of the functions (6 routines) can be used
to write many applications

Driven to Discover

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

for Advanced Computational Research

Parallel programming paradigms

SPMD (Single Program Multiple Data)
*All processes follow essentially the same execution path
‘Data-driven execution

MPMD (Multiple Programs Multiple Data)
‘Master and slave processes follow distinctly different
execution paths

‘Heterogeneous computing (6PU, PHI, ...)

MPTI supports both

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

Driven to Discover

for Advanced Computational Research

MPI Blocking Communication

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Sending and Receiving Messages

Basic message passing :
One process send a message
Another process receives the message.

Process 0 Process 1

—”Send > | Receive

Questions:

*To whom is data sent?

‘Where is the data?

‘What type of data is sent?

‘How much data is sent?

‘How does the receiver identify it?

oSupercomputing |nstitute UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Message is divided into data and envelope

data
buffer
count
data type
envelope
process identifier (source/destination rank)
message tag
communicator

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPT Calling Conventions

Fortran Bindings:
Call MPI_XXXX (..., ierror)
Case insensitive
Almost all MPI calls are subroutines
ierror is always the last parameter
Program must include ‘mpif.h’

C Bindings:
int ierror = MPI_Xxxxx (...)

Case sensitive (as it always is in C)

All MPT calls are functions: most return integer error code
Program must include “mpi.h”

Parameters are passed by value = pass pointers to data buffers

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPT Basic Send/Receive

Blocking send:

MPI_Send (buffer, count, datatype, dest, tag, comm)

Blocking receive:

MPI_Recv (buffer, count, datatype, source, tag, comm, status)

*Supercomputing Institute

M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI C Datatypes

MPI datatype C datatype

MPI_CHAR char
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_UNSIGNED_CHAR unsigned char
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED_LONG unsigned long int
MPI_UNSIGNED unsigned int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE byte
MPI_PACKED

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPTI Fortran Datatypes

MPI FORTRAN FORTRAN datatypes

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_REALS REAL*8
MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER
MPI_BYTE

MPI_PACKED

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Process Identifier

« MPI Application: runs on a group of processes.
 RANK: one processes in this group
 Rank NUMBER: unique number for the process

In MPI communication:
« Destination is specified by rank number
 Can point to all ranks: MPI_ANY_SOURCE

* Processes are named according to their rank in the group
« Can have more than one group in an MPI application
« Groups are pointed to by a “communicator”

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Communicators

A communicator
denotes a group of processes in an MPI application

MPl COMM_WORLD
predefined communicator
Includes all processes in an MPI application

New communicators
can be created in an MPI program
can point to some or all MPI “ranks
can point to a re-ordering of ranks

Most MPI programs only use MPI_ COMM_WORLD

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Message Tag

Tags allow programmers to
» Organize / classify MP|l messages
* Distinguish messages from the same source

The MPI standard guarantees that tags are

* integers intherange 0 ~ 32,767 (at least)

* most implementations allow a much larger range of tags
 upper bound on tag value: MPI_TAG_UB

MPI ANY TAG can be used as a wild card

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Blocking Communication Semantics

 MPI_SEND does not complete until buffer is empty
(available for reuse)

« MPI_RECYV does not complete until buffer is full
(available for use)

« Completion of communication generally depends on
the message size, system memory & network

* Blocking communication is simple to use but can be
slow or cause deadlocks (if you are not careful).

* A blocking or nonblocking send can be paired to a
blocking or nonblocking receive

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Fortran Example

program MPI_small

include ‘mpif.h’

integer rank, size, ierror, tag, status(MPI_STATUS_SIZE)
character(12) message

call MPI_INIT(ierror)
call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierror)
call MPT_COMM_RANK(MPI_COMM_WORLD, rank,ierror)
tag = 100
if(rank .eq. O) then

message = ‘Hello, world’

do i=1, size-1

call MPI_SEND(message, 12, MPI_CHARACTER, i, tag,

" MPI_COMM_WORLD, ierror)
enddo

Else
call MPT_RECV(message, 12, MPI_CHARACTER, O, tag,
MPI_COMM_WORLD, status, ierror)

endif

print*, ‘node’ rank, ‘:’, message
call MPI_FINALIZE(ierror)

end

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

C Example

#include<stdio.h>
#include “mpi.h”
main(int argc, char **argv)

int rank, size, tag, rc, i:
MPI_Status status;
char message[20]

rc = MPI_Init(&argc,&argv)
rc = MPI_Comm_size(MPI_COMM_WORLD,&size):
rc = MPI_Comm_rank(MPI_COMM_WORLD,&rank);
tag = 100;
if(rank == 0) {
strcpy(message, “Hello, world”);
for (i=1; i<size; i++)
} rc = MPI_Send(message, 13, MPI_CHAR, i, tag, MPI_COMM_WORLD):

else
rc = MPI_Recv(message, 13, MPI_CHAR, O, tag, MPI_COMM_WORLD, &status);

print(“node %d : %.13s\n”, rank,message);
rc = MPI_Finalize();

}

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Hands-on
https://www.msi.umn.edu/content/mpi-hands-workshop

Get example and build
cp -r /home/tech/public/examples/hello_ mpi .
cd hello_mpi

module load intel impi
make

Run interactively
mpirun -np 4 ./hello

Set the following for large-memory jobs
ulimit -s unlimited

*Supercomputing Institute M UNIVERSITY OF MINNESOTA

for Advanced Computational Research

Driven to Discover

MPTI Non-Blocking Communication
)

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Blocking Communication

MP|_SEND does not complete until buffer is copied out. Time
depends on send mode and MPI implementation.

MPI|_RECV does not complete until the message is
completely received.

Completion of communication generally depends on the
message size and the system buffer size.

Blocking communication is simple to use but may be prone to
deadlocks.

Initiation of blocking communication may suffer from high
latency - poor scaling to many MPI ranks.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

Driven to Discover

for Advanced Computational Research

Deadlocks

Two or more processes (MPI ranks) wait for each other to
act before they act. They each stop before getting to the
part of the code where they would have taken the action
needed for other ranks to keep going.

Common example:

Two ranks call a blocking mpi_recv to each other.
Each waits for data form the other.
Neither ever sends it.

To avoid deadlocks

Different ordering of calls between ranks
Non-blocking calls

Use of MPI_SendRecv

Buffered mode

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Send modes

Standard Mode (MPl_Send)

The standard MPI Send, the send will not complete until it is safe to modify
the send buffer: buffer has at least been copied to a supplied system
buffer. MPI may or may not buffer: depends on many details.

Synchronous mode (MPl_Ssend)
The send does not complete until after a matching receive has been
posted

Buffered mode (MPI_Bsend)
User supplied buffer space is used for system buffering.

The send will complete as soon as the send buffer is copied to the user
supplied buffer.

Ready mode (MPl_Rsend)

The send will send eagerly under the assumption that a matching receive
has already been posted (an error results otherwise).

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Non Blocking Communication

* Non-blocking calls return immediately
« A completion call is needed to ensure the operation is finishes.

For example:

MPI_ISEND(start, count, datatype, dest, tag, comm, request1)
MPI_WAIT(request1, status)

MPI_IRECV(start, count, datatype, src, tag, comm, request2)
MPI_WAIT(request2, status)

Or use for all non-blocking communications
MPI_WAITALL (count, request_array, status_arrsy)

One can also test the status without waiting using MPI_TEST
MPI_TEST(request, flag, status)

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Non Blocking Communication Example

Process A

<sbuf is ready to send>
Isend(sbuf, ... B, ... Hsend)
<do not change sbuf>

<can do work here>
<can do other MPI calls>

Wait(Hsend, ...)
<safe to modify sbuf>

Time

Transfer
happens
here

Process B

Irecv(rbuf, ... A, ... Hrecv)
<do nothing with rbuf>

<can do work here>
<can do other MPI calls>

Wait(Hrecy, ...)
<can use rbuf>

lllustrates conservative use of standard Isend & Irecv calls

*Supercomputing Institute

for Advanced Computational Research

M UNIVERSITY OF MINNESOTA

Driven to Discover

Non-blocking Send Syntax

C:
int MPI1_Isend(void* buf, int count, MPI_Datatype datatype, int dest, int tag,
MPI_Comm comm, MPI_Request *request)

FORTRAN:

MPI1_ISEND(BUF, COUNT, DATATYPE, DEST, TAG,
COMM, REQUEST, IERROR)

[IN buf] initial address of send buffer (any data type)

[IN count] number of elements in send buffer (integer)

[IN datatype] datatype of each send buffer element (defined constant)
[IN dest] rank of destination (integer)

[IN tag]| message tag (integer)

[IN comm] communicator (handle)

[OUT request] communication request (handle)

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Non-blocking Recv Syntax

C:
int MPI1_Irecv(void* buf, int count, MPI|_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Request *request)

FORTRAN:
MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG,
COMM, REQUEST, IERROR)

[OUT buf] initial address of receive buffer (choice)

[IN count] number of elements in receive buffer (integer)

[IN datatype] datatype of each receive buffer element (defined constant)
[IN dest] rank of source (integer)

[IN tag] message tag (integer)

[IN comm] communicator (handle)

[OUT request] communication request (handle)

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Non-blocking Communication completion calls

Wait: MPI_WAIT or MPI_WAITALL
Used for non-blocking Sends and Receives
Suspends until an operation completes

MPI_WAIT syntax

Fortran call MPl_WAIT (request, status, ierror)
C: ierror = MPI_Wait (request, status)

Test: MPI_TEST

Returns immediately with information about a non-blocking send or
receive. Gives immediate answer to: is send or receive done?

MPI_TEST Syntax
Fortan: call MPI_TEST (request, flag, status, ierror)
C: ierror = MPI_Test (request, flag, status)

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Non-blocking Communication completion calls

A request object can be deallocated at any time
Use the following operation:

MPI_REQUEST FREE(request)
[INOUT request] communication request (handle)

C: ierror = MPIl_Request_free(MPI_Request *request)
FORTRAN: call MPI_REQUEST_FREE(REQUEST, IERROR)

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Non-blocking Communication Examples

Example: Simple usage of nonblocking operations and MPl_WAIT

IF(rank.EQ.O0) THEN
CALL MPI_ISEND(a(1), 10, MPIl_REAL, 1, tag, comm, request, ierr)
****do some computation to mask latency™**
CALL MPI_WAIT(request, status, ierr)

ELSE
CALL MPI_IRECV(a(1), 10, MPI_REAL, 0, tag, comm, Request, ierr)
****do some computation to mask latency™***
CALL MPI_WAIT(Request, status, ierr)

END IF

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

INCLUDE “mpif.h”
INTEGER ierror, rank, size, status(MPI_STATUS_SIZE), requests (2)

CALL MPIL_INIT(ierror)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
IF(rank.eq.0) THEN
c=9.2
a=4.2
b=8.4
CALL MPIL_ISEND(a, 1, MPI_REAL,1,101,MPI_COMM_WORLD, requests(1), ierror)
I Can do computations which do not overwrite a
b=b+a
CALL MPI_WAIT(requests(1), status, ierror)
d=b+c
ELSE
a=14.2
s=18.4
CALL MPI_IRECV(c,1,MPI_REAL,0,101,MPI_COMM_WORLD, requests(2), ierror)
! Do not read from or overwrite c till wait
CALL MPI_WAIT(requests(2), status,ierror)
c=a+c
END IF

CALL MPI_FINALIZE(ierror)
STOP
END

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Non-blocking Communication

Gain

* Avoid Deadlocks

« Decrease Synchronization Overhead

« Can Reduce System Overhead

« Post non-blocking sends/receives early and do waits late

« Recommended: do MPI_IRECV before the MPI_Rsend is called.

Be careful with reads and writes
— Avoid writing to send buffer between MPI_ISEND and MPI_WAIT

— Avoid reading or writing in receive buffer between MPI_IRECV and
MPI_WAIT

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI
Collective Communication

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Collective Communication

Three Classes of Collective Operations

Data movement:
broadcast, gather, all-gather, scatter, and all-to-all

Collective computations (reductions):
Data from all members in a group is “reduced” to produce a global

result (min, max, sum, ...).

Synchronization:
processes wait until all members of the group have reached the

synchronization point

Every process must call the same collective communication
function.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Collective Communication Broadcast

One rank sends (broadcasts) a block of data to all the

ranks in a group.

data

oAy A,

1 broadcast AO

2 A,

v] AO
processes

*Supercomputing Institute
for Advanced Computational Research

UNIVERSITY OF MINNESOTA
Driven to Discover

MPI Collective Communication Broadcast

Syntax
C: int MPI_Bcast (void* buffer, int count, MPI_Datatype datatype, int root,
MPI_Comm comm)
Fortran: MPI_BCAST (buffer, count, datatype, root, comm, ierr)
where:

buffer: is the starting address of a buffer

count: is an integer indicating the number of data elements in the buffer

datatype: is MPI defined constant indicating the data type of the elements
in the buffer

root: is an integer indicating the rank of broadcast root process

comm: is the communicator

The MPI_BCAST must be called by each process in the group,
specifying the same comm and root. The message is sent from the root
process to all processes in the group.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Collective Communication
Gather

Data is distributed throughout all processors in the group.
Collect distributed data to a specified process (rank).

\, 100l 100 |

100 100 100

real a(100), rbuf(MAX)
call mpi_gather(a, 100, MPI_REAL, rbuf, 100, MPl_REAL, root, comm, ierr)

all processes

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

Driven to Discover

for Advanced Computational Research

MPI Collective Communication
Gather

Syntax
C:
int MPI_Gather(void* sbuf, int scount, MPI_Datatype stype, void* rbuf, int rcount,
MPI_Datatype rtype, int root, MPI_Comm comm)

FORTRAN:
MPI_GATHER (sbuf, scount, stype, rbuf, rcount, rtype, root, comm, ierr)
where:
sbuf: is the starting address of a buffer,
scount: is the number of elements in the send buffer,
stype: is the data type of send buffer elements,
rbuf: is the address of the receive buffer
rcount: is the number of elements for any single receive
rtype: is the data type of the receive buffer elements
root: is the rank of receiving process, and
comm: is the communicator
ierr: IS error message

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Collective Communication
Gather Example

INCLUDE ‘mpif.h’

DIMENSION A(25, 100), b(100), cpart(25), ctotal(100)
INTEGER root, rank

CALL MPI_INIT(ierr)

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, np, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

root=1
Call set_a(A,rank)
Call set_b(B)

A *b = c
DO I=1,25 _ T o
cpart(1)=0. Process 1 1
DO K=1,100 E , -
cpart(l)=cpart(l)+A(l,K)*b(K) rocess
EHB 88 Process 3 3
CALL MPI_GATHER (cpart, 25, MPI_REAL, ctotal, 25, | "°¢ess | |4 4]

& MPI_REAL, root, MPI_COMM_WORLD, ierr)

, - A: Matrix distributed by rows
If(rank.eq.root) print*, (ctotal(l),I=1,100) n.
CALL MPI_FINALIZE (ierr) B: Vector shared by all process

END - C: results to get by the root process

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Collective Communication
Scatter

Distribute data of to all the processes (ranks) in a group.

100 100 100
! F — all processes
100 100 100

real sbuf(MAX), rbuf(100)
call mpi_scatter(sbuf, 100, MPI_REAL, rbuf, 100, MPI_REAL, root, comm, ierr)

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

Driven to Discover

for Advanced Computational Research

MPI Collective Communication

Scatter Syntax
C:
int MP1_Scatter(void* sbuf, int scount, MPI_Datatype stype, void* rbuf,
int rcount, MP1_Datatype rtype, int root, MPI_Comm comm)
FORTRAN:
MPI_SCATTER(sbuf, scount, stype, rbuf, rcount, rtype, root, comm, ierr)
where:
sbuf: is the address of the send buffer,
scount: is the number of elements sent to each process,
stype: is the data type of the send buffer elements,
rbuf: is the address of the receive buffer,
rcount: is the number of elements in the receive buffer,
rtype: is the data type of the receive buffer elements,
root: is the rank of the sending process, and
comm: is the communicator

Note: sbuf is significant for root process only

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Sample execution

PROGRAM scatter $ mpirun -np 3 ./a.out
INCLUDE ‘mpif.h’ 0: irecv = 1
INTEGER isend(3) 1:irecv = 2
CALL MPIL_INIT (ierr) 2:irecv =3

CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
IF (myrank= = 0) THEN
DO i=1, nprocs
isend (i) = i
ENDDO
end if
CALL MPI_SCATTER (isend, 1, MPI_INTEGER,
& irecv, 1, MPI_INTEGER, 0,
& MPI_COMM_WORLD, ierr)
PRINT *, ‘irecv =", irecv
CALL MPI_FINALIZE(ierr)

END
ank=o=root __Tank=T rank=2
sendcount
1 sendbuf
recvcolmt 2
3 recvbuf recvbuf
v v :
1 2 —

oSupercomputing |nstitute UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Collective Communication
All Gather

MPI_ALLGATHER can be thought of as MPI GATHER where all processes,
not only one, receive the result.

A A, |B, | C, | D

0 allgather L I e
BO

> AO BO CO DO

CO AO BO CO DO

! D, A, |B, | C, | D,
processes

The syntax of MPI_ALLGATHER is similar to MPI_GATHER. However, the
argument root is dropped

oSupercomputing |nstitute UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Collective Communication
All Gather Syntax

int MPI_Allgather (void* sbuf, int scount, MP|_Datatype stype, void* rbuf, int rcount,
MPI Datatype rtype, MPI_Comm comm)

FORTRAN
MPI_ALLGATHER (sbuf, scount, stype, rbuf, rcount, rtype, comm, ierr)

Example: back to the previous “gather” example, what should we do if
every process needs the results of array Ctotal for next computation?

Replace
CALL MPI_GATHER (cpart, 25, MPI_REAL, ctotal, 25,
MPI REAL root, MPI COMM WORLD ierr)

With
CALL MPI_ALLGATHER (cpart, 25, MPI_REAL, ctotal, 25,
MPI REAL MPI COMM WORLD ierr)

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Collective Communication

Alltoall
Send Buffer Receive Buffer
Data > Data >
P A, | By | Cy | Dy | Ey | Fy P A, |A A, |A |A, | A
r
r B, |B, |B, |B; |B, |B;
o A; | By |G | Dy |E | F o c lc 1o e Te Te
c 0 1 2 3 4 5
c A2 B2 C2 D2 E2 F3 e
S A3 B3 C3 D3 E3 F3 S
s |E, |E, |E, |E. |E, |E
s 0 1 2 3 4 5
e Aa | Ba |G Da | B | By ° Ir 1r [E [k |E |F
S As Bs CS Ds Es Fs S - 1 - 3 - :

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI Collective Communication
Alltoall Syntax

C:
int MPI1_Alltoall(void* sbuf, int scount, MP1_Datatype stype, void* rbuf, int
rcount, MP|_Datatype rtype, MPI_Comm comm)
FORTRAN:
MPI_ALLTOALL (sbuf, scount, stype, rbuf, rcount, rtype, comm, ierr)
where:

sbuf: is the starting address of send buffer,

scount: is the number of elements sent to each process,
stype: is the data type of send buffer elements,

rbuf: is the address of receive buffer,

rcount: is the number of elements received from any process,
rtype: is the data type of receive buffer elements, and

comm: is the group communicator.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

rank=0 rank=1 rank=2 PROGRAM alltoall

sendcount 7 INCLUDE ‘mplfh’
% é//é////% INTEGER isend (3), irecv (3)
I 7 CALL MPI_INIT(ierr)
CALL MPI_COMM _SIZE(MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,
& myrank, ierr)

1 2 3 ;
7, 7 7 27 VA DO i=1, nprocs
3 %

isend (i) =i + nprocs * myrank

recvcount

recvbuf recvbuf recvbuf ENDDO
PRINT *, ‘isend =*, isend
Figure of MPI_ALLTOALL CALL MPI_ALLTOALL(isend, 1, MPI_INTEGER,
& irecv, 1, MPI_INTEGER,
& MPI_COMM_WORLD, ierr)
$ a.out -procs 3 PRINT *, ‘irecv =, irecv
0:isend123 CALL MPI_FINALIZE(ierr)
1:isend 456 END
2:isend 789
0:irecv147
1:irecv258
2:irecv369

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Hands-on
https://www.msi.umn.edu/content/mpi-hands-workshop

Get example and build
cp -r /home/tech/public/examples/hello_ mpi .
cd hello_mpi

module load intel impi
make

Run interactively
mpirun -np 4 ./hello

Set the following for large-memory jobs
ulimit -s unlimited

*Supercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover

MPI
Collective Computations and Synchronization

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI_ Reduce

These routines perform a global operation across all
members of a group

The partial result in each process in the group is combined
in one specified process or all the processes using some
desired function.

Three reduces routines:

MPI_REDUCE returns results to a single process;
MPI_ALLREDUCE returns results to all processes in the
group;

MPI_REDUCE_SCATTER scatters a vector, which results
in a reduce operation, across all processes.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Fortran
MPI_REDUCE (sbuf, rbuf, count, stype, op, root, comm, ierr)

MPI_ALLREDUCE (sbuf, rbuf, count, stype, op, comm, ierr)
MPI_REDUCE_SCATTER (sbuf, rbuf, rcounts, stype, op, comm, ierr)

where
sbuf: is the address of send buffer,
rbuf; is the address of receive buffer,
count: is the number of elements in send buffer,
stype: is the data type of elements of send buffer,
op: is the reduce operation (which may be MPI predefined, or your own),
root: is the rank of the root processes, and

comm: is the group communicator.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

int MPI_Reduce (void* sbuf, void* rbuf, int count, MPI_Datatype stype,
MPI_Op op, int root, MPI Comm comm)

int MPI_Allreduce(void* sbuf, void* rbuf, int count, MPI Datatype stype, MPI_Op op,
MPI Comm comm)

int MPl_Reduce_scatter (void* sbuf, void* rbuf, int* rcounts, MPI Datatype stype,
MPI_Op op, MPI Comm comm)

where
sbuf: is the address of send buffer,
rbuf: is the address of receive buffer,
count: is the number of elements in send buffer,
stype: is the data type of elements of send buffer,
op: is the reduce operation (which may be MPI predefined, or your own),
root: is the rank of the root processes, and

comm: is the group communicator.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPTI Predefined Reduce Operations

Name Meaning

C type

FORTRAN type

MPI_MAX maximum integer, float integer, real, complex

MPI_MIN minimum integer, float integer, real, complex

MPI_SUM sum integer, float integer, real, complex

MPI_PROD product integer, float integer, real, complex

MPI_LAND logical and integer logical

MPI_BAND bit-wise and integer, MPI_BYTE integer, MPI_BYTE

MPI_LOR logical or integer logical

MPI_BOR bit-wise or integer, MPI_BYTE integer, MPI_BYTE

MPI_LXOR logical xor integer logical

MPI_BXOR bit-wise xor integer MPI_BYTE integer, MPI_BYTE

MPI_MAXLOC max value and location combination of int, float, combination of integer, real,
double, and long double complex, double precision

MPI_MINLOC min value and location combination of int, float, combination of integer, real

double, and long double

complex, double precision

*Supercomputing Institute

M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI_REDUCE

Usage: CALL MPI_REDUCE (sendbuf, recvbuf, count, datatype, op, root, comm, ierror)

Parameters
(CHOICE) sendbuf The address of the send buffer (IN)
(CHOICE) recvbuf The address of the receive buffer, sendbuf and recvbuf cannot overlap in memory. (significant only at root) (OUT)

INTEGER count The number of elements in the send buffer (IN)

INTEGER datatype The data type of elements of the send buffer (handle) (IN)

INTEGER op The reduction operation (handle) (IN)

INTEGER root The rank of the root process (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code sample Pr‘ogram

PROGRAM reduce

include ‘mpif.h’

CALL MPLINIT (ierr)

CALL MPI_COMM_SIZE (MPI_COMM_WORLD, nprocs, ierr)

comm CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
rank=0=root rank=1 rank=2 isend= myrank+1
count 1 2 3 CALL MPI_REDUCE (isend, irecv, 1, MPI_INTEGER,
sendbuf sendbuf sendbuf & MPI_SUM, 0, MPI_COMM_WORLD, ierr)
IF (myrank= =0) THEN
+)e &) ! PRINT *, ‘irecv =", irecv
count [op op endif
6=1+2+3 CALL MPI_FINALIZE (ierr)
recvbuf END
Sample execution
% a.out -procs 3
Figure: MPI_REDUCE for Scalar Variables % O: irecv = 6

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI_ALLREDUCE

Usage: CALL MPI_ALLREDUCE (sendbuf, recvbuf, count, datatype, op, comm, ierror)

comm
rank=0 rank=1 rank=2
count Sample program
PROGRAM allreduce
INCLUDE ‘mpif.h’
CALL MPI_INIT (ierr)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
send bu send CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)
count isend = myrank + 1
6=1+2+3: 6=1+2+3 6=14+2+3 CALL MPI_ALLREDUCE (isend, irecv, 1, MPT_INTEGER, MPI_SUM,
recvbuf recvbuf recvbuf & MPI_COMM_WORLD, ierr)
PRINT *, ‘irecv =*, irecv
CALL MPI_FINALIZE (ierr)
END
Parameters Sample execution
(CHOICE) sendbuf The starting address of the send buffer (IN) $ a.out -procs 3
(CHOICE) recvbuf The starting address of the receive buffer,,
sendbuf and recvbuf cannot overlap in memory (OUT) 0: irecv =6
INTEGER count The number of elements in the send buffer (IN) 1:irecv = 6

INTEGER datatype The data type of elements of the send buffer (handle) 2:irecv==6
(IN)

INTEGER op The reduction operation (handle)(IN)
INTEGER comm The communicator (handle) (IN)
INTEGER ierror The Fortran return code

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

MPI_REDUCE_SCATTER

Usage: CALL MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror)

Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)

(CHOICE) recvbuf The starting address of the receive buffer, sendbuf and recvbuf
cannot overlap in memory. (OUT)

INTEGER recvcounts(*)

Integer array specifying the number of elements in result distributed to
each process. Must be identical on all calling processes. (IN)

INTEGER datatype The data type of elements of the input buffer (handle) (IN)
INTEGER op The reduction operation (handle) (IN)

INTEGER comm The communicator (handle) (IN)

INTEGER ierror The Fortran return code

Description MPI_REDUCE_SCATTER first performs an element-wise reduction on

vector of count = Z, recvcounts(i) elements in the send buffer defined by
sendbuf, count and datatype. Next, the resulting vector is split into n
disjoint segments, where n is the number of members in the group.
Segment i contains recvcounts(i) elements. the ith segment is sent to
process | and stored in the receive buffer defined by recvbuf,
recvcounts(i) and datatype. MPI_REDUCE_SCATTER is functionally

oSupercomputing Institute ﬂ UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

CALL MPI_REDUCE_SCATTER (sendbuf, recvbuf, recvcounts, datatype, op, comm, ierror)

COMM

Sample Program
PROGRAM reduce_scatter
INCLUDE ‘mpif.h’

) I [| 21 _
[27 W 2% INTEGER isend (6), irecv (3)
7 7

7 7h3 INTEGER ircnt (0:2)

rank=0 rank=1 rank=2

recvcounts(0

recvcounts(1 :
) m 24 DATA ircnt/1.2.3/
_15 2> CALL MPL_INIT (ierr)
;ecvcounts(z _16 26 CALL MPI_COMM_SIZE(MPI_COMM_WORLD, nprocs, ierr)
— fe”db“ CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)
DO i=1.6
isend (i) =i + myrank * 10
ENDDO
CALL MPI_REDUCE_SCATTER(isend, irecv, ircnt, MPI_INTEGER,
& MPI_SUM, MPI_COMM_WORLD,
ierr)

PRINT *, ‘irecv =-. irecv
CALL MPI_FINALIZE(ierr)

33 / Y m $ a.out -procs 3
Fig. recvbuf %// % m O:irecv=33 0 0

MPI_REDUCE_ recvbuf 1:irecv=36 39 0
SCATTER recvbuf _
2:irecv=42 45 48

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

Driven to Discover

for Advanced Computational Research

Scan

A scan or prefix-reduction operation performs partial reductions on distributed data.

C:. int MPI_Scan (void* sbuf, void* rbuf, int count, MPI_Datatype
datatype, MPI_OP op, MPI_Comm comm

FORTRAN: MPI_SCAN (sbuf, rbuf, count, datatype, op, comm, ierr)

Where:
sbuf:is the starting address of the send buffer,
rbuf: is the starting address of receive buffer,
count: is the number of elements in input buffer,
datatype: is the data type of elements of input buffer
op: is the operation, and
comm: is the group communicator.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Usage: CALL MPI_SCAN (sendbuf, recvbuf, count, datatype, op, comm, ierror)

comm Parameters

(CHOICE) sendbuf The starting address of the send buffer (IN)
(CHOICE) recvbuf The starting address of the receive buffer,

sendbuf and recvbuf
rank=0 rank=1 rank=2 cannot overlap in memory (OUT)
count INTEGER count The number of elements in sendbuf (IN)
INTEGER datatype The data type of elements of sendbuf (handle) (IN)
INTEGER op The reduction operation (handle) (IN)
INTEGER comm The communicator (handle) (IN)
sendbuf T~ sendbuf INTEGER ierror The Fortran return code
op op
count Sample program
1 3=1+2 b=1+2+3 PROGRAM scan
recvbuf recvbuf recvbuf INCLUDE ‘mpif.h’
CALL MPI_INIT (ierr)
CALL MPI_COMM_SIZE (MPI_COMM_WORLD, nprocs, ierr)
CALL MPI_COMM_RANK (MPI_COMM_WORLD, myrank, ierr)

] isend = myrank + 1
Figure. MPI_SCAN CALL MPI_SCAN (isend, irecv, 1, MPI_INTEGER,

& MPI_SUM, MPI_COMM_WORLD, ierr)
PRINT *, ‘irecv =‘ irecv
CALL MPI_FINALIZE(ierr)
END

Sample execution

$ a.out -procs 3
0:irecv =1
O:irecv=3
0:irecv=6

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

User-defined Operations

User can define his/her own reduce operation
Makes use of the MPI_OP_CREATE function

Performance Issues

A great deal of hidden communication takes place with
collective communication. Performance depends greatly
on the particular implementation of MPI. Because there
may be forced synchronization, not always best to use
collective communication.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Barrier Synchronization

Two types of synchronization:

Implicit synchronization
Explicit synchronization: MPl_BARRIER

MPI provides a function call, MP| BARRIER, to
synchronize all processes within a communicator.

A barrier is simply a synchronization primitive. A
node calling it will be blocked until all the nodes
within the group have called it.

Supercomputing Institute M UNIVERSITY OF MINNESOTA
«for Advanced Computational Research Driven to Discover*

Barrier Synchronization

The syntax of MPI_BARRIER for both C and Fortran program is:

- C:
MPI_Barrier (MPl_Comm comm)

- FORTRAN
MPI_BARRIER (comm, ierr)

where:
MPI1_Comm: is an MPI predefined stucture of communicators,
comm: is an integer denoting a communicator
lerr: is an integer return error code.

oSupercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover*

Hands-on
https://www.msi.umn.edu/content/mpi-hands-workshop

Get example and build
cp -r /home/tech/public/examples/hello_ mpi .
cd hello_mpi

module load intel impi
make

Run interactively
mpirun -np 4 ./hello

Set the following for large-memory jobs
ulimit -s unlimited

*Supercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover

THANK YOU

More info at

www.msi.umn.edu
612-626-0802

*The University of Minnesota is an equal opportunity educator and employer. This PowerPoint is available in alternative

formats upon request. Direct requests to Minnesota Supercomputing Institute, 599 Walter library, 117 Pleasant St. SE, . X . .
P q q P [P, Minneapolis Minnesotary55455, 612-624-0528. *© 2009 Regents of the University of Minnesota. All rights

reserved.

Supercomputing Institute M UNIVERSITY OF MINNESOTA

«for Advanced Computational Research Driven to Discover

